摘要:
An interface for connecting co-planar printed circuit ("PC") boards (10,20) using a compressible circuit (50) for bridging the PC boards (10,20), a base (80) underlying the second PC board and integrally attached thereto, and a support housing (30) which sandwiches the compressible circuit (50) against the two PC boards (10,20). The compressible circuit (50) is insertable into the underside of the support housing (30) and may be electro-optically aligned therewith. The compressible circuit (50) is then staked to the support housing (30), and the support housing is mounted on the two PC boards (10,20). In order to mount the support housing (30) on the PC boards (10,20) with the requisite precision, the support housing (30) is provided with alignment means including resilient finger (39) on the underside, and the second PC board (20) is provided with cooperating guide tabs (25).The electro-optic alignment and attachment of the compressible circuit (50) with the support housing (30) together with the precise alignment of the support housing (30)over the two PC boards (10,20) insures a precision high-density interface.
摘要:
A compressible electrical connector (10) includes a rigid molded body (11) having elastomeric caps (19, 20) at the top (12) and bottom (13) thereof. A thin flexible film (21), provided with respective connector elements (22), is wrapped around the rigid molded body (11) and its caps (19, 20) and is retained by a film retaining plate (23). The film retaining plate (23) has a plurality of latching lances (24) received in corresponding mounting holes (30) formed transversely in the rigid molded body (11). A hot melt layer (36) is placed over the film retaining plate (23), and a plurality of compressible electrical connectors (10) are stacked side-by-side to form an array (35). The array (35) is disposed between a pair of PC boards or other electronic assemblies (39, 40) having respective circuit elements (37, 38). The height of the rigid molded body may be changed conveniently to readily accommodate different product applications.
摘要:
A molded connector housing (10) has respective pairs of integrally-molded latching fingers (18,20,21) for quick assembly to respective mother and daughter boards (11,12). A locking plunger (25) is received between the pairs of latching fingers (18,20,21) to secure the assembly. The plunger (25) may also be used with an axially-compressible fastener or grommet (43). In lieu of the latching fingers, an integrally-molded fastener (50) cooperates with a conical nut (52) having circumferentially-spaced ears (53) slidably received in slots (51) in the fastener.
摘要:
This invention is directed to a mechanical, robotically operated burn-in socket testing apparatus for integrated circuit "chips", where such chips, as known in the art, are typically planar electronic devices. The apparatus, operationally mounted to a planar electronic board, such as a mother board, comprises a first frame member for mounting to the mother board, where the first frame member includes electrical means for engaging chip leads and applying electrical current thereto during the burn-in testing. A second frame member is disposed in sliding engagement with the first frame member, where the second frame member is movable from a first position to a second position. Finally, cooperative latching and camming means are provided between the first and second frame members to effect the movement between the first and second positions, and to securely hold the chip during burn-in, where the camming means includes a pivotal member movable from a remote position free of the chip to a position engaging the chip.
摘要:
A combination heat sink (18, 41, 43) and circuit interface comprises a metallic wafer (15) disposed between an integrated circuit (11) and a printed circuit board (14) in a land grid array package (10). A frame (13) for the integrated circuit (11) is nested within the heat sink (18, 41, 43) and a latch (30) is pivotably mounted on the frame (13) for retaining the overall package (10). The circuit interface comprises a plurality of flexible electrical connectors (19) mounted on the wafer (15).
摘要:
A connector body (10 10', 10") is mounted on a mother board (11) and has a compressible electrical connector (15). A daughter board (22) is slidably inserted into the connector body (10, 10', 10") perpendicularly of the mother board (11). A deflection means (34, 56) engages a side of the daughter board (22) and deflects the daughter board (22) away from the compressible electrical connector (15) to prevent damage thereto after the daughter board (22) is slidably inserted. When the daughter board (22) is fully inserted, a retaining means 28, 43, 69) exerts a lateral clamping force on the daughter board (22).
摘要:
This invention is directed to an electrical connector for sequentially connecting plural contacts provided along the respective mating surfaces of a pair of planar electronic devices, where the devices are joined to or mounted within a pair of pivotally arranged housing members. The connector comprises a first housing mounted to one of the planar devices, such as a mother board, where first housing includes an open end and a closed end, and a second housing mounting the other planar electronic device, such as a daughter board, second housing includes an open end and a closed end, and that the respective closed ends include cooperative means for hingely engaging each other. By this arrangement, as the planar electronic devices are pivotally moved about the cooperative means from a nonparallel position to a parallel position of electrical engagement, the respective plural contacts between the planar electronic devices enter into engagement in a sequentially predetermined order.
摘要:
A docking station (10) slidably receives a device (12) to provide make, break or tap functions, respectively, in a circuit interface. The circuit interface includes a pair of connector housings (17, 18) provided with flexible (or compressible) electrical connectors (19, 20), respectively. A camming member (28, 29; 31, 32; 44) separates the connector housings (17, 18) as the device (12) is slidably inserted into the docking station (10), thereby assuring a substantially zero insertion force on the circuit interface. Preferably, the circuit interface is between the flexible electrical connectors (19, 20), a printed circuit board (13), and a flexible etched circuit (15). The flexible etched circuit (15) is provided with a stiffener (24) resiliently biased by springs (27).
摘要:
This disclosure relates to testing apparatus (10), preferably an LGA burn-in test socket, for an integrated chip (28). The apparatus (10), arranged for mounting on a planar electronic device (46), such as a printed circuit board, includes a frame member (12) for mounting to the planar electronic device (46), where the frame member (12) includes a central opening (22) extending between first and second surfaces, and dimensionally sized to receive the chip (28). Recesses (35) are provided for receiving an electronic interface member (18) mounting plural flexible electrical connectors (106), such as an elastomeric connector, as known in the art, for engaging the traces or pads of the chip to the planar device during testing. Further, plural recesses (40) extend from at least the first surface, where each recess includes a compression spring (41). Positioned over and for engagement with the frame member is a floatably mounted force applying member (14) having first and second parallel surfaces. A central opening (75), concentric with the central opening ( 22) of the frame member (12) is present. Additionally, plural posts (62) extend from the second parallel surface for receipt in respective recesses (44). Finally, camming levers (16) are provided for urging the force applying member toward the frame member, along with pivotal pusher members (78) responsive to the camming levers to engage and secure the chip during testing thereof.
摘要:
The invention is directed to an electronic assembly, such as a backplane assembly of the type including a mother board, a connector housing mounted on the mother board, and a daughter board slidably insertable into the connector housing for electrical interconnection to the mother board. The assembly comprises an elongated connector housing having a pair of parallelly disposed spaced apart housing members defining at least one slot therebetween for receiving the daughter board. A force generating member is disposed within the slot, where the force generating members comprises a pair of resilient, essentially L-shaped members. One leg of each of the L-shaped members is fixedly disposed between the mother board and the housing members, while the others of the legs upstand within the slot in a spaced apart relationship to receive the daughter board therebetween, the upstanding legs including at least one pair of opposing elastomeric members to apply a compressive pressure to said daughter board. Further, a flexible circuit element is mounted on the force generating member and is operatively disposed to electrically interconnect the daughter board to the mother board. A preferred feature thereof is the provision of a camming means on the upstanding legs to allow insertion of the daughter board without causing damage to the circuitry on the flexible circuit element, preferable in the form of a flat film.