Abstract:
An electron beam apparatus is provided for reliably measuring a potential contrast and the like at a high throughput in a simple structure. The electron beam apparatus for irradiating a sample, such as a wafer, formed with a pattern with an electron beam to evaluate the sample comprises an electron-optical column for accommodating an electron beam source, an objective lens, an ExB separator, and a secondary electron beam detector; a stage for holding the sample, and relatively moving the sample with respect to the electron-optical column; a working chamber for accommodating the stage and capable of controlling the interior thereof in a vacuum atmosphere; a loader for supplying a sample to the stage; a voltage applying mechanism for applying a voltage to the sample, and capable of applying at least two voltages to a lower electrode of the objective lens; and an alignment mechanism for measuring a direction in which dies are arranged on the sample. When the sample is evaluated, a direction in which the stage is moved is corrected to align with the direction in which the dies are arranged.
Abstract:
The present invention provides an electron beam apparatus for evaluating a sample surface, which has a primary electro-optical system for irradiating a sample with a primary electron beam, a detecting system, and a secondary electro-optical system for directing secondary electron beams emitted from the sample surface by the irradiation of the primary electron beam to the detecting system.
Abstract:
The present invention provides a stage device applicable to a semiconductor manufacturing apparatus. A stage device 10 comprises a Y-axis stage 20 and an X-axis stage 40, said Y-axis stage 20 including a fixed component 21 and a movable component 26 movable along the Y-axis, said X-axis stage 40 including a fixed component 41 and a movable component 43 movable along the X-axis, wherein the fixed component 41 of the X-axis stage 40 is disposed in the movable component 26 side of the Y-axis stage 20, the Y-axis is designed as a scanning axis, while the X-axis is designed as a stepping axis, and a non-contact sealing device is arranged between the fixed component 21 and the movable component 26 of the Y-axis stage 20.