摘要:
An electrode layer for a polymer memory may be implanted to increase the number of defects in the material. As a result, that same material may be utilized for the upper and lower electrodes. In particular, defects may be introduced into a TiOx layer within the electrode to match the work functions of the upper and lower electrodes.
摘要:
Methods of depositing various metal layers adjacent to a ferroelectric polymer layer are disclosed. In one embodiment, a collimator may be used during a sputtering process to filter out charged particles from the material that may be deposited as a metal layer. In various embodiments, a metal layer may contain at least one of an intermetallic layer, an amorphous intermetallic layer, and an amorphized intermetallic layer.
摘要:
Methods of depositing various metal layers adjacent to a ferroelectric polymer layer are disclosed. In one embodiment, a collimator may be used during a sputtering process to filter out charged particles from the material that may be deposited as a metal layer. In various embodiments, a metal layer may contain at least one of an intermetallic layer, an amorphous intermetallic layer, and an amorphized intermetallic layer.
摘要:
By using a plurality of relatively thin stacked diffusion layers interposed between a conductive line and a polymer layer, the diffusion of contaminates into a polymer layer from the conductive line may be reduced. This may reduce part failure during fatigue or disturb testing, for example, in ferroelectric polymer memories.
摘要:
According to one aspect of the invention, a memory array and a method of constructing a memory array are provided. An insulating layer is formed on a semiconductor substrate. A first metal stack is then formed on the insulating layer. The first metal stack is etched to form first metal lines. A polymeric layer is formed over the first metal lines and the insulating layer. The polymeric layer has a surface with a plurality of roughness formations. A second metal stack is formed on the polymeric layer with an interface layer, which is thicker than the heights of the roughness formations. Then the second metal stack is etched to form second metal lines. Memory cells are formed wherever a second metal line extends over a first metal line.
摘要:
Embodiments of the invention provide a method for producing ferroelectric polymer devices (FPMDs) employing conditions that avoid or reduce detrimental impact on the ferroelectric polymer film. For one embodiment, a damascene patterning metallization technique is used. For one embodiment a first metal layer is deposited on a substrate to form the bottom electrode for the FPMD. The first metal layer is capped with a selectively deposited diffusion barrier. A layer of ferroelectric polymer film is then deposited on the first conductive layer. The ferroelectric polymer film is planarized. A second metal layer is deposited on the ferroelectric polymer film layer to form the top electrode of the FPMD. The second metal layer is deposited such that the ferroelectric polymer film is not substantially degraded. For various alternative embodiments the various component processes may be accomplished at temperatures far below those employed in a conventional damascene patterning metallization process.
摘要:
Methods for improving the net remnant polarization of a polymer memory cell are disclosed. In one embodiment, the polymer material is heated above the Curie temperature of the polymer material, and the domains of the polymer material are aligned with an externally applied electric field.
摘要:
Embodiments of the invention provide a method for producing ferroelectric polymer devices (FPMDs) employing conditions that avoid or reduce detrimental impact on the ferroelectric polymer film. For one embodiment, a damascene patterning metallization technique is used. For one embodiment a first metal layer is deposited on a substrate to form the bottom electrode for the FPMD. The first metal layer is capped with a selectively deposited diffusion barrier. A layer of ferroelectric polymer film is then deposited on the first conductive layer. The ferroelectric polymer film is planarized. A second metal layer is deposited on the ferroelectric polymer film layer to form the top electrode of the FPMD. The second metal layer is deposited such that the ferroelectric polymer film is not substantially degraded. For various alternative embodiments the various component processes may be accomplished at temperatures far below those employed in a conventional damascene patterning metallization process.
摘要:
Embodiments in accordance with the present invention eliminate the need for a subtractive metal patterning process to pattern the electrode above a ferroelectric polymer. Instead, a selective electroless deposition process is used. A conductive polymer is used as a seed layer for the electroless plating of the metal electrode. A cost saving is provided by eliminating the chemical costs associated with conventional resist removal processing. The methods also potentially eliminate the requirement for aggressive and environmentally unsafe chemical-based photoresist removal processes.
摘要:
An electrode layer for a polymer memory may be implanted to increase the number of defects in the material. As a result, that same material may be utilized for the upper and lower electrodes. In particular, defects may be introduced into a TiOx layer within the electrode to match the work functions of the upper and lower electrodes.