摘要:
A test system for performing tests on devices under test (DUTs) includes a storage device storing test data for performing the tests on the DUTs, a shared processor for generating the test data, storing the test data in the storage device and generating a test control signal including one or more test instructions for executing the tests, and, for each DUT, a dedicated processor configured to receive a test control signal from the shared processor, and in response to the test control signal, transfer the test data for one of the test instructions to the DUT to execute that test instruction and verify the completion of that test instruction.
摘要:
Systems and methods of allocating device testing resources are described. In one aspect, a system for allocating m resources for testing devices to n sites of a probe card configured to electrically connect to respective test site locations on a substrate, where m and n are integers and m
摘要:
A test system for performing tests on devices under test (DUTs) includes a storage device storing test data for performing the tests on the DUTs, a shared processor for generating the test data, storing the test data in the storage device and generating a test control signal including one or more test instructions for executing the tests, and, for each DUT, a dedicated processor configured to receive a test control signal from the shared processor, and in response to the test control signal, transfer the test data for one of the test instructions to the DUT to execute that test instruction and verify the completion of that test instruction.
摘要:
A test system for performing tests on devices under test (DUTs) includes a storage device storing test data for performing the tests on the DUTs, a shared processor for generating the test data, storing the test data in the storage device and generating a test control signal including one or more test instructions for executing the tests, and, for each DUT, a dedicated processor configured to receive a test control signal from the shared processor, and in response to the test control signal, transfer the test data for one of the test instructions to the DUT to execute that test instruction and verify the completion of that test instruction.
摘要:
In one embodiment, a semiconductor test control system includes a computer system having a plurality of hardware resources; a hypervisor installed on the computer system; and a test floor controller installed on the computer system. The hypervisor virtualizes the hardware resources and provides each of at least one virtual appliance with access to a respective virtual set of the hardware resources. Each virtual set of the hardware resources places its respective virtual appliance in controlling communication with at least a first aspect of a semiconductor test system, thereby enabling the respective virtual appliance to test a respective type of semiconductor device. The test floor controller is in controlling communication with i) at least a second aspect of the semiconductor test system, and ii) each of the at least one virtual appliance.
摘要:
A system and method that enables testing of circuitry using an externally generated signature. An external tester is arranged external to a device under test (DUT). Such external tester is operable to input test data to the DUT, receive output data from the DUT, and generate a signature for at least a portion of such received output data. The external tester compares the generated signature with an expected signature to determine whether the DUT is functioning as expected. If the generated signature fails to match an expected signature, then error data can be written to an error map log. Preferably, further interaction with the DUT is not required after detecting that a generated signature fails to match an expected signature in order to perform such error evaluation. Thus, error evaluation can be performed concurrently with testing of the DUT. Mask data may be stored in a compressed form, and decompressed and used for masking certain non-deterministic output bits in generating the signature.
摘要:
A system for use in automated test equipment. In one embodiment, the system includes a configurable integrated circuit (IC) programmed to provide test patterns and an interface to at least one device under test (DUT). The system also includes a connection to the at least one DUT, wherein the connection is coupled directly between the configurable IC and the at least one DUT.
摘要:
A system and method in which a plurality of dice on a semiconductor wafer are interconnected to enable efficient testing thereof. In certain embodiments a plurality of dice are interconnected in a manner that enables test data to be communicated from a tester system to a plurality of dice for concurrent testing of such plurality of dice. Depending on the amount of interconnection, all or a portion of each of the plurality of dice may be tested concurrently. In certain embodiments, a plurality of dice are interconnected in a manner that enables test data to be communicated from one die to at least one other die. In certain embodiments, a plurality of dice are interconnected in a manner that enables such dice to be tested concurrently while maintaining a repeatable pattern at the reticle level for fabricating such dice.
摘要:
Representative embodiments are generally directed to storing compressed test pattern data on an automated test equipment (ATE) device. In one embodiment, the test pattern data is compressed according to a linear feedback shift register (LFSR). The LFSR may possess a low probability of occurrence of linear dependencies associated with compression of stimulus patterns to enable relatively highly compacted patterns to be compressed. Additionally or alternatively, repeat-filled test pattern data is run length encoded using variable length code words to facilitate parallel decompression within the ATE device.
摘要:
A system for use in automated test equipment. In one embodiment, the system includes a configurable integrated circuit (IC) programmed to provide test patterns and an interface to at least one device under test (DUT). The system also includes a connection to the at least one DUT, wherein the connection is coupled directly between the configurable IC and the at least one DUT.