Abstract:
Methods of producing metal catalysts can include mixing two or more metal salts and an aluminum salt in water to produce a metal catalyst precursor solution; mixing the metal catalyst precursor solution and an alkali metal buffer solution to produce a precipitate; ion exchanging the alkali metal in the precipitate for a non-alkali cation to produce a low-alkali metal precipitate comprising 3 wt % or less alkali metal by weight of the precipitate on a dry basis; producing a powder from the low-alkali metal precipitate; and calcining the powder to produce a metal catalyst. Such metal catalysts may be useful in producing bifunctional catalyst systems that are useful in, among other things, converting syngas to dimethyl ether in a single reactor
Abstract:
A method of producing bifunctional catalyst systems that include a carbon-coated metal catalyst may comprise: coating a metal catalyst particle with a carbon-containing small molecule to produce a coated metal catalyst particle; carbonizing the carbon-containing small molecule on the coated metal catalyst particle to produce a carbon-coated metal catalyst particle; and mixing the carbon-coated metal catalyst particle with an acid catalyst particle to produce an acid/metal bifunctional catalyst system. Further, a method of producing bifunctional catalyst systems that include a carbon-coated acid catalyst may be similarly performed by coating a metal catalyst particle with a carbon-containing small molecule to produce a coated metal catalyst particle; carbonizing the carbon-containing small molecule on the coated metal catalyst particle to produce a carbon-coated metal catalyst particle; and mixing the carbon-coated metal catalyst particle with an acid catalyst particle to produce an acid/metal bifunctional catalyst system.
Abstract:
Systems and methods are provided for conversion of gas phase reactants including CO and H2 to C2+ products using multiple catalysts in a single reactor while reducing or minimizing deactivation of the catalysts. Separate catalysts can be used that correspond to a first catalyst, such as a catalyst for synthesis of methanol from synthesis gas, and a second catalyst, such as a catalyst for conversion of methanol to a desired C2+ product. The separate catalysts can be loaded into the reactor in distinct layers that are separated by spacer layers. The spacer layers can correspond to relatively inert particles, such as silica particles. Optionally, the spacer layer can include an adsorbent, such as boron supported on alumina or boron carbide particles. The adsorbent can be suitable for selective adsorption of the one or more reaction products (such as one or more reaction by-products), to allow for further reduction or minimization of the deactivation of the conversion catalysts.
Abstract:
A method of producing a acid/metal bifunctional catalyst may include: mixing an acid catalyst, a metal catalyst, and a fluid to produce a slurry, wherein the acid catalyst is present at 50 wt % or less relative to a total catalyst weight in the slurry; heating the slurry; producing a powder from the slurry; and calcining the powder to produce the acid/metal bifunctional catalyst. Such acid/metal bifunctional catalyst would be useful in the direct conversion of syngas to dimethyl ether as well as other reactions.
Abstract:
Systems and methods are provided for conversion of gas phase reactants including CO and H2 to C2+ products using multiple catalysts in a single reactor while reducing or minimizing deactivation of the catalysts. Separate catalysts can be used that correspond to a first catalyst, such as a catalyst for synthesis of methanol from synthesis gas, and a second catalyst, such as a catalyst for conversion of methanol to a desired C2+ product. The separate catalysts can be loaded into the reactor in distinct layers that are separated by spacer layers. The spacer layers can correspond to relatively inert particles, such as silica particles. Optionally, the spacer layer can include an adsorbent, such as boron supported on alumina or boron carbide particles. The adsorbent can be suitable for selective adsorption of the one or more reaction products (such as one or more reaction by-products), to allow for further reduction or minimization of the deactivation of the conversion catalysts.
Abstract:
Integrated methods and systems are disclosed for the production of dimethyl ether. The method may include reforming natural gas to syngas in a first reactor; contacting the syngas produced in the first reactor with a catalyst system in a second reactor to produce dimethyl ether and carbon dioxide; and supplying steam as a cofeed to at least one of the first reactor and the second reactor in an amount sufficient to achieve a Mm value of 1.4 to 1.8 or to improve the hydrocarbon or oxygenate selectivity.
Abstract:
A method of producing bifunctional catalysts by extrusion may include mixing an acid catalyst, a metal catalyst, optionally a binder, and a fluid to produce a dough; extruding the dough to form an extrudate; producing a powder from the extrudate; and calcining the powder to produce an acid/metal bifunctional catalyst. Such acid/metal bifunctional catalysts may be useful in, among other things, converting syngas to dimethyl ether in a single reactor.
Abstract:
In various aspects, systems and methods are provided for operating molten carbonate fuel cells with processes for iron and/or steel production. The systems and methods can provide process improvements such as increased efficiency, reduction of carbon emissions per ton of product produced, or simplified capture of the carbon emissions as an integrated part of the system. The number of separate processes and the complexity of the overall production system can be reduced while providing flexibility in fuel feed stock and the various chemical, heat, and electrical outputs needed to power the processes.
Abstract:
In various aspects, systems and methods are provided for operating molten carbonate fuel cells in a refinery setting. The molten carbonate fuel cells can be used to provide hydrogen to various refinery processes, including providing hydrogen in place of using a carbon-based fuel for various combustion reactions. In a further aspect, CO2-containing streams generated by refinery processes can also be used as input streams to the molten carbonate fuel cells.
Abstract:
In various aspects, systems and methods are provided for integration of molten carbonate fuel cells with processes for synthesis of nitrogen-containing compounds. The molten carbonate fuel cells can be integrated with a synthesis process in various manners, including providing hydrogen for use in producing ammonia. Additionally, integration of molten carbonate fuel cells with a methanol synthesis process can facilitate further processing of vent streams or secondary product streams generated during synthesis of nitrogen-containing compounds.