Abstract:
An object of the present invention is to provide a method for manufacturing an aluminum plate which is simple, is high in productiveness, allows the use of arbitrary aluminum materials, and can be suitably used for collectors having excellent adhesiveness to active material layers, a collector for a storage device, and a storage device. The method for manufacturing an aluminum plate of the present invention is a method for manufacturing an aluminum plate having an aluminum substrate having a plurality of through holes in a thickness direction, including an oxidized film-forming step of forming an oxidized film by carrying out an oxidized film-forming treatment on a surface of the aluminum substrate having a thickness in a range of 5 μm to 1,000 μm and a through hole-forming step of forming through holes by carrying out an electrochemical dissolution treatment after the oxidized film-forming step.
Abstract:
An object of the present invention is to provide an aluminum plate which is excellent in terms of both step suitability and working characteristics and a collector for a storage device using the same. The aluminum plate of the present invention is an aluminum plate having a plurality of through-holes formed in a thickness direction, in which a thickness of the aluminum plate is 40 μm or less, an average opening diameter of the through-holes is 0.1 to 100 μm, an average opening ratio by the through-holes is 2% to 30%, a content of Fe is 0.03% by mass or more, and a ratio of the content of Fe to a content of Si is 1.0 or more.
Abstract:
Provided is a lithographic printing method including a preparing step of preparing a lithographic printing plate precursor which includes an aluminum support, and an image recording layer containing an acid color developing agent and an acid generator on the aluminum support, an exposing step of exposing the lithographic printing plate precursor, a developing step of supplying acidic dampening water to the exposed lithographic printing plate precursor and removing a non-image area of the image recording layer, and a printing step, in which the aluminum support includes an anodized aluminum film, the anodized film has micropores, and a value ΔS is 15% or greater and 60% or less.
Abstract:
The present invention provides a lithographic printing plate precursor that enables a lithographic printing plate formed therefrom to have excellent image visibility and a long press life, as well as a lithographic printing plate manufacturing method and a printing method. The lithographic printing plate precursor of the invention is a lithographic printing plate precursor including an aluminum support and an image recording layer, the aluminum support includes an aluminum plate and an anodized film of aluminum formed on the aluminum plate, the anodized film is positioned closer to the image recording layer than the aluminum plate is, the anodized film has micropores extending in a depth direction of the anodized film from a surface of the anodized film on the image recording layer, the micropores have an average diameter of more than 10 nm but not more than 100 nm at the surface of the anodized film, and the surface of the anodized film on the image recording layer side has a lightness L* of 70 to 100 in a L*a*b* color system.
Abstract:
A lithographic printing plate support of the invention includes an aluminum plate and an anodized aluminum film which has micropores extending from a surface of the anodized film opposite from the aluminum plate in a depth direction of the anodized film; the micropores each have a large-diameter portion extending from the anodized film surface to an average depth (depth A) of 75 to 120 nm and a small-diameter portion which communicates with the bottom of the large-diameter portion; the average diameter of the large-diameter portion at the anodized film surface is at least 10 nm but less than 30 nm; a ratio of the depth A to the average diameter (depth A/average diameter) of the large-diameter portion is more than 4.0 but up to 12.0; and an average diameter of the small-diameter portion at the communication level is more than 0 but less than 10 nm.
Abstract:
An object of the present invention is to provide a lithographic printing plate precursor from which a lithographic printing plate with excellent oil-based cleaner printing durability is obtained, a method of producing a lithographic printing plate, a printing method, and a method of producing an aluminum support. The lithographic printing plate precursor of the present invention is a lithographic printing plate precursor including an aluminum support, and an image recording layer disposed on the aluminum support, in which the aluminum support includes an aluminum plate and an anodized aluminum film disposed on the aluminum plate, the image recording layer is disposed on the aluminum support on a side of the anodized film, and an area ratio of projections with a height of 0.80 μm or greater from an average level, which is obtained by measuring a surface of the aluminum support on a side of the image recording layer in an area of 400 μm×400 μm using a non-contact three-dimensional roughness meter, is 20% or less.
Abstract:
The present invention aims at providing a lithographic printing plate precursor, a lithographic printing plate manufacturing method, a printing method and an aluminum support manufacturing method that enable the resulting lithographic printing plate to have a long tiny dot press life. The lithographic printing plate precursor of the invention is a lithographic printing plate precursor having an aluminum support and an image recording layer disposed above the aluminum support. When measured over a 400 μm×400 μm region of a surface of the aluminum support on the image recording layer side using a three-dimensional non-contact roughness tester, pits with a depth from centerline of at least 0.70 μm are present at a density of at least 3,000 pits/mm2; and a surface area ratio ΔS is not less than 35%, the surface area ratio ΔS being determined using an actual area Sx obtained, through three-point approximation, from three-dimensional data acquired by measurement at 512×512 points in 25 μm square of the surface of the aluminum support on the image recording layer side by means of an atomic force microscope and a geometrically measured area So.
Abstract:
An object is to provide an aluminum plate which has favorable adhesiveness and coating properties to active materials and has a high strength and a method for manufacturing an aluminum plate. An average opening diameter of the plurality of through holes is 0.1 μm or more and 100 μm or less, an average opening ratio of the plurality of through holes is 2% or more and 40% or less, among the plurality of through holes, a percentage of through holes having an opening diameter of 5 μm or less is 40% or less, among the plurality of through holes, a percentage of through holes having an opening diameter of 40 μm or more is 40% or less, and, among the plurality of through holes, a percentage of through holes in which a ratio S1/S0 of an area S1 of the through holes to an area S0 of a circle having a long axis of the through hole as a diameter is 0.1 or more and 1 or less is 50% or more.
Abstract:
A presensitized plate having a long press life and excellent resistance to scum and corrosive micro-stains and capable of on-press development is provided. The presensitized plate includes a photosensitive layer containing (A) a sensitizing dye, (B) a polymerization initiator, (C) a polymerizable compound, and (D) a binder polymer; and a protective layer which are formed on a support in this order. The support is prepared from an aluminum alloy plate containing intermetallic compound particles with a circle equivalent diameter of 0.2 μm or more at a surface density of 35,000 pcs/mm2 or more and aluminum carbide particles with a maximum length of 1 μm or more in an amount of up to 30,000 pcs/g.
Abstract translation:提供具有长的印刷寿命和优异的抗浮渣和腐蚀性微污染并且能够进行印刷机发展的预感板。 预感板包括含有(A)增感染料,(B)聚合引发剂,(C)可聚合化合物和(D)粘合剂聚合物的感光层; 和保护层,其形成在载体上。 该载体由含有金属间化合物颗粒的铝合金板制备,其中当量直径为0.2μm或更大的圆形当量的表面密度为35,000pcs / mm 2或更高,最大长度为1μm或更大的碳化铝颗粒的量为 高达30,000个/ g。
Abstract:
The present invention provides a support for a lithographic printing plate, from which a lithographic printing plate precursor having excellent scratch resistance can be obtained by combining the support with an image recording layer, a lithographic printing plate precursor, and a method of producing a lithographic printing plate. The support for a lithographic printing plate according to the present invention, including an aluminum plate, and an anodized aluminum film disposed on the aluminum plate, in which a plurality of projections are present on a surface of the support for a lithographic printing plate on a side of the anodized film, an average value of equivalent circular diameters of the projections in a cut surface at a position that is 0.5 μm greater than a position of the projections with an average height is in a range of 3.0 to 10.0 μm, and a density of the projections with a height of 0.5 μm or greater from the position of the projections with the average height is in a range of 3,000 to 9,000 pc/mm2.