Abstract:
An acidic gas separation module including: a perforated hollow central tube; and a layered body that is wound on the perforated hollow central tube and has, in the following order on a porous support: an acidic gas separation layer containing a water-absorbing polymer, a carrier, and water; and a flow channel material with a network structure having a thread intersection portion and an arithmetical surface roughness for a surface contacting the acidic gas separation layer in the thread intersection portion of 35 μm or less. The acidic gas separation module suppresses generation of flocculated water by maintaining the generation of turbulent flow in the flow channel material, effectively suppresses damage to the surface of the acidic gas separation layer by the flow channel material in the winding-on process during manufacture, and exhibits excellent acidic gas separation efficiency.
Abstract:
Provided are a gas separation membrane which has a resin layer containing a compound having a siloxane bond, in which the resin layer containing a compound having a siloxane bond satisfies Expressions 1 and 2, and at least one of gas permeability or gas separation selectivity is high under high pressure; a method of producing a gas separation membrane; a gas separation membrane module; and a gas separator. 0.9≥A/B≥0.63 Expression 1 B≥1.7 Expression 2 In the expressions, A represents an O/Si ratio that is a ratio of the number of oxygen atoms relative to the number of silicon atoms contained in the resin layer containing a compound having a siloxane bond at a depth of 10 nm from the surface of the resin layer containing a compound having a siloxane bond, and B represents an O/Si ratio that is a ratio of the number of oxygen atoms relative to the number of silicon atoms in the surface of the resin layer containing a compound having a siloxane bond.
Abstract:
According to the present invention, there are provided a membrane for immunoisolation, including: a porous membrane that contains a polymer, in which the porous membrane includes a layered compact portion where a pore diameter is the smallest within the membrane, and a pore diameter continuously increases in a thickness direction from the compact portion toward at least one surface of the porous membrane; a chamber for transplantation for enclosing a biological constituent therein, including the above-described membrane for immunoisolation on at least a part of a surface forming an inside and an outside of the chamber for transplantation; and a device for transplantation, including the above-described chamber for transplantation enclosing the biological constituent therein. In the membrane for immunoisolation of the present invention which can be manufactured at low costs, a deterioration in substance permeability is unlikely to occur.
Abstract:
A composition for forming a carbon dioxide separation membrane, which includes a water-absorbing polymer, a carbon dioxide carrier, and a polysaccharide, is disclosed.
Abstract:
An object of the present invention is to provide a cell transplant device having an ability to induce angiogenesis around the cell transplant device, and a method for manufacturing the same. According to the present invention, a cell transplant device including a cell structure (A) that includes a plurality of biocompatible polymer blocks and a plurality of cells of at least one type, and in which at least one of the biocompatible polymer blocks is disposed in gaps between the plurality of cells; and an immunoisolation membrane (B) that encloses the cell structure is provided.
Abstract:
According to the present invention, there is provided a membrane for immunoisolation, including a porous membrane that contains a polymer, in which Formulas (I) and (II) are satisfied for at least one surface of the porous membrane, B/A≤0.7 (I) and A≥0.015 (II) (in the formula, A represents a ratio of an N element to a C element on a surface of the membrane, and B represents a ratio of the N element to the C element at a depth of 30 nm from the surface of the membrane); a chamber for transplantation for enclosing a biological constituent therein, including the above-described membrane for immunoisolation on at least a part of a surface forming an inside and an outside of the chamber for transplantation; and a device for transplantation includes the above-described chamber for transplantation enclosing the above-described biological constituent therein. The membrane for immunoisolation of the present invention has a high bioaffinity.
Abstract:
Provided are a gas separation membrane which has a resin layer containing a compound having a siloxane bond, in which the resin layer containing a compound having a siloxane bond satisfies Expressions 1 and 2, and at least one of gas permeability or gas separation selectivity is high under high pressure; a method of producing a gas separation membrane; a gas separation membrane module; and a gas separator. 0.9≥A/B≥0.55 Expression 1 B≥1.7 Expression 2 In the expressions, A represents an O/Si ratio that is a ratio of the number of oxygen atoms relative to the number of silicon atoms contained in the resin layer containing a compound having a siloxane bond at a depth of 10 nm from the surface of the resin layer containing a compound having a siloxane bond, and B represents an O/Si ratio that is a ratio of the number of oxygen atoms relative to the number of silicon atoms in the surface of the resin layer containing a compound having a siloxane bond.
Abstract:
Provided is a gas separation membrane including a support, a separation layer, and a protective layer in this order, in which the separation layer contains inorganic particles, the protective layer contains a resin and inorganic particles having an average particle diameter of 10 nm or greater which is less than 0.34 times the film thickness of the protective layer, and the content of the inorganic particles contained in the protective layer is 40% by mass or less with respect to the content of the resin contained in the protective layer, the gas separation membrane being capable of being made into a spiral type gas separation membrane module while maintaining high permeability; and a gas separation membrane module which uses the gas separation membrane.
Abstract:
According to the present invention, there are provided a chamber for transplantation, including a membrane for immunoisolation including a porous membrane at at least part of a boundary between an inside and an outside of the chamber for transplantation, in which the porous membrane contains a polymer and has a layered compact portion where a pore diameter is the smallest within the membrane, a pore diameter continuously increases in a thickness direction from the compact portion toward both one surface A and the other surface B of the porous membrane, a porosity in a vicinity of the surface A is 65% or more, an average pore diameter of the surface A is larger than an average pore diameter of the surface B, and the surface B is disposed on the inside of the chamber for transplantation; and a device for transplantation including the chamber for transplantation enclosing a biological constituent therein. In the chamber for transplantation of the present invention, angiogenesis in a recipient is induced and a deterioration in substance permeability is unlikely to occur.
Abstract:
A gas separation membrane, the gas separation membrane module, and the gas separation device each have a support, a resin layer, a separation layer, and a protective layer in this order, in which the resin layer includes a compound having a siloxane bond, the protective layer is in direct contact with the separation layer, a composition of the protective layer is different from a composition of the resin layer, the composition of the protective layer is different from a composition of the separation layer, and the separation layer has a maximum value of a silicon atom content of 2 atomic % or less in a composition of a half area on a side of the protective layer in a thickness direction.