摘要:
An image forming method includes charging an image holding member; forming an electrostatic latent image on a surface of the image holding member; developing the electrostatic latent image formed on the surface of the image holding member with a toner or an electrostatic image developer to form a toner image; transferring the toner image formed on the surface of the image holding member onto a surface of a transfer-receiving material; fixing the toner image by pressurization without heating; feeding at least one photoreactive component to the toner or toner image; and irradiating the toner image with ultraviolet rays, wherein the toner satisfies the relationship of the following relational expression (1): TB(30)≦100
摘要:
An image forming method includes charging an image holding member; forming an electrostatic latent image on a surface of the image holding member; developing the electrostatic latent image formed on the surface of the image holding member with a toner or an electrostatic image developer to form a toner image; transferring the toner image formed on the surface of the image holding member onto a surface of a transfer-receiving material; fixing the toner image by pressurization without heating; feeding at least one photoreactive component to the toner or toner image; and irradiating the toner image with ultraviolet rays, wherein the toner satisfies the relationship of the following relational expression (1): TB(30)≦100
摘要:
A baroplastic includes a first resin with a first Tg; and a second resin with a second Tg that is lower than the first Tg by 20° C. or more, and has a photoreactive group.
摘要:
The present invention discloses a method of synthesizing an aliphatic polymer having a ketone group in the main chain thereof, in which polyhydric alcohol (for example, glycerin) as a raw material is polymerized in the presence of a catalyst, and a method of preparing a composition containing an aliphatic polymer having a ketone group in the main chain thereof, including such a process.
摘要:
A carbon nanotube dispersion includes a carbon nanotube compound represented by structural formula A and a dispersion medium in which the carbon nanotube is dispersed or dissolved, wherein a moiety represented by double lines represents a carbon nanotube R1 represents a hydrogen atom, a substituted or unsubstituted alkyl group having one or two carbon atoms, a substituted or unsubstituted aryl group or a substituted or unsubstituted carbodiimide group, R2 represents a substituted or unsubstituted alkyl group having from 1 to 4 carbon atoms, and m and n each independently represents an integer of 1 or more.
摘要:
A carbon nanotube dispersion includes a carbon nanotube compound represented by structural formula A and a dispersion medium in which the carbon nanotube is dispersed or dissolved, wherein a moiety represented by double lines represents a carbon nanotube R1 represents a hydrogen atom, a substituted or unsubstituted alkyl group having one or two carbon atoms, a substituted or unsubstituted aryl group or a substituted or unsubstituted carbodiimide group, R2 represents a substituted or unsubstituted alkyl group having from 1 to 4 carbon atoms, and m and n each independently represents an integer of 1 or more.
摘要:
The invention provides an aliphatic polymer having a ketone group and ether bonding in its main chain, characterized by comprising structural units represented by the Formula (1) and by the Formula (2). In the Formulae (1) and (2), Ra and Rb each independently represents a substituted or unsubstituted divalent aliphatic hydrocarbon group. Rc represents a substituted or unsubstituted divalent aliphatic hydrocarbon group having ether bonding in a terminal thereof, or a single bond. n1 represents an integer of 1 or more. n2 represents an integer of 0 or more. And, n1+n2 is in a range of 2 to 1000. The polymer preferably contains ether bonds and ketone groups in a ratio of 0.01 to 100. The polymer can be substantially comprised of a structural unit represented by the Formula (1) as a repeating unit. A resin composition containing as a component structural units represented by the Formula (1) is also provided. The resin composition may further comprise an electrically conductive powder.
摘要:
To provide a carbon nanotube device capable of efficiently exerting various electrical or physical characteristics of a carbon nanotube, the present invention provides: a carbon nanotube device, in which a carbon nanotube structure layer having a network structure in which plural carbon nanotubes mutually cross-link, is formed in an arbitrary pattern on a surface of a base body; and a method of manufacturing the carbon nanotube device with which the carbon nanotube can be suitably manufactured.
摘要:
An electron beam generator device includes a base body having a conductive surface and a electron-emission electrode having a carbon nanotube structure on the conductive surface of the substrate. The carbon nanotube structure constitutes a network structure which has plural carbon nanotubes and a crosslinked part including a chemical bond of plural functional groups. The chemical bond connects one end of one of the carbon nanotubes to another one of the carbon nanotubes. A method for producing an electron beam generator device, includes applying plural carbon nanotubes each having a functional group onto a conductive surface of a base body, and crosslinking the functional groups with a chemical bond to form a crosslinked part, thereby forming a carbon nanotube structure constituting a network structure having plural carbon nanotubes electrically connected to each other.
摘要:
Provided are a carbon nanotube structure more excellent in electric conductivity, thermal conductivity, and mechanical strength, and a method of manufacturing the carbon nanotube structure. A carbon nanotube composite structure is characterized by including: a first carbon nanotube structure in which functional groups bonded to plural carbon nanotubes are chemically bonded and mutually cross-linked to construct a network structure; and a second carbon nanotube structure in which functional groups bonded to plural carbon nanotubes are chemically bonded and mutually cross-linked to construct a network structure, the second carbon nanotube structure being combined with the network structure of the first carbon nanotube structure.