Abstract:
A controller for a shared memory is disclosed. The controller comprises a transaction scanner configured to scan-in a plurality of transactions to access the shared memory and to divide the transactions into beat-level memory access commands. The controller also comprises a command super-arbiter comprising a plurality of command arbiters corresponding to a plurality of shared memory blocks in the shared memory. The command super-arbiter is configured to access a quality of service for each of the transactions, arbitrate the beat-level memory access commands associated with the transactions based on the quality of service for each of the plurality of transactions, and dispatch the beat-level memory access commands to the shared memory blocks based on results of arbitrating the beat-level memory access commands.
Abstract:
A distributed and shared memory controller (DSMC) comprises at least one building block. comprising a plurality of switches distributed into a plurality of stages; a plurality of master ports coupled to a first stage of the switches; and a plurality of bank controllers with associated memory banks coupled to a last stage of the switches; wherein each of the switches connects to lower stage switches via internal connections, each of the switches of the first stage connects to at least one of the master ports via master connections and each of the switches of the last stage connects to at least one of the bank controllers via memory connections; wherein each of the switches of the first stage connects to second stage switches of a neighboring building block via outward connections and each of the switches of a second stage connects to first stage switches of the neighboring building block via inward connections.
Abstract:
A distributed and shared memory controller (DSMC) comprises at least one building block. comprising a plurality of switches distributed into a plurality of stages; a plurality of master ports coupled to a first stage of the switches; and a plurality of bank controllers with associated memory banks coupled to a last stage of the switches; wherein each of the switches connects to lower stage switches via internal connections, each of the switches of the first stage connects to at least one of the master ports via master connections and each of the switches of the last stage connects to at least one of the bank controllers via memory connections; wherein each of the switches of the first stage connects to second stage switches of a neighboring building block via outward connections and each of the switches of a second stage connects to first stage switches of the neighboring building block via inward connections.
Abstract:
A controller for a shared memory is disclosed. The controller comprises a transaction scanner configured to scan-in a plurality of transactions to access the shared memory and to divide the transactions into beat-level memory access commands. The controller also comprises a command super-arbiter comprising a plurality of command arbiters corresponding to a plurality of shared memory blocks in the shared memory. The command super-arbiter is configured to access a quality of service for each of the transactions, arbitrate the beat-level memory access commands associated with the transactions based on the quality of service for each of the plurality of transactions, and dispatch the beat-level memory access commands to the shared memory blocks based on results of arbitrating the beat-level memory access commands.
Abstract:
An apparatus comprises a central processor that outputs a first control signal to data organizers that organizes and moves data and a second control signal to vector processors that receives a first and second set of data from the data organizers. A first vector processor includes a first instruction circuit that executes a first plurality of vector functions and a second instruction circuit that executes a second plurality of vector functions. A first vector function is selected from the first plurality of vector functions to process the first set of data in response to the second control signal. Similarly, a second vector function is selected from the second plurality of vector functions to process the second set of data in response to the second control signal.
Abstract:
An apparatus and method are provided for allocating resources to a plurality of threads to perform a service. In use, a request for service is received. At least one of a plurality of resources is allocated to the threads. Further, the service is performed with the threads, utilizing the allocated at least one resource.
Abstract:
An apparatus and method are provided for allocating resources to a plurality of threads to perform a service. In use, a request for service is received. At least one of a plurality of resources is allocated to the threads. Further, the service is performed with the threads, utilizing the allocated at least one resource.
Abstract:
A controller for a shared memory is disclosed. The controller comprises a transaction scanner configured to scan-in a plurality of transactions to access the shared memory and to divide the transactions into beat-level memory access commands. The controller also comprises a command super-arbiter comprising a plurality of command arbiters corresponding to a plurality of shared memory blocks in the shared memory. The command super-arbiter is configured to access a quality of service for each of the transactions, arbitrate the beat-level memory access commands associated with the transactions based on the quality of service for each of the plurality of transactions, and dispatch the beat-level memory access commands to the shared memory blocks based on results of arbitrating the beat-level memory access commands.