Abstract:
A grain starter for use in solidification of molten metallic material forming an article having a directional grain structure and a method for solidifying an article having a directional grain structure with a substantial absence of stray grains. The grain starter comprises a grain-starting material that initiates grain growth in the molten metallic material in a preselected crystallographic direction. The grain-starting material has a melting temperature higher than the metallic material forming the article lest the grain starter be modified by contact with the molten material. The grain starter further includes a feature that modifies heat transfer characteristics of the metallic material in contact with it in order to produce an article having grains oriented in the preselected crystallographic orientation and modifies the profile of the advancing solidification front. The article is substantially free of stray grains not oriented in the preselected crystallographic direction.
Abstract:
A method for treating a coated article having a depleted layer following exposure of the coated article to an operational temperature is disclosed. The method includes applying an aluminizing composition to the article, forming an overlay aluminide coating on the article from the aluminizing composition, heat treating the overlay aluminide coating, and diffusing aluminum from the overlay aluminide coating into the depleted layer, transforming at least a portion of the depleted layer into a rejuvenated layer. The depleted layer includes a depleted concentration of aluminum relative to a corresponding layer of the coated article prior to the coated article being exposed to the operational temperature. The rejuvenated layer includes a rejuvenated concentration of aluminum which is elevated relative to the depleted concentration of aluminum. A treated article includes a substrate, a rejuvenated aluminide layer disposed on the substrate, and an overlay aluminide coating disposed on the rejuvenated aluminide layer.
Abstract:
A braze composition, brazing process, and brazed article are disclosed. The braze composition includes a MCrAlY alloy at a concentration, by weight, of between 50% and 70%, where M is selected from the group consisting of nickel, cobalt, iron, alloys thereof, and combinations thereof, and a nickel-based alloy at a concentration, by weight, of between 30% and 50%. The brazing process includes forming a braze paste, brazing the braze paste to a portion of a component, and shaping the braze paste to form a brazed article. The brazed article includes a component and a braze composition brazed to the component, the braze composition including a MCrAlY alloy at a concentration, by weight, of between 50% and 70%, where M is selected from the group consisting of nickel, cobalt, iron, alloys thereof, and combinations thereof, and a nickel-based alloy at a concentration, by weight, of between 30% and 50%.
Abstract:
A component and method of forming a component are disclosed. The component includes a cast alloy section and an additive manufacturing section secured to the cast alloy section. Both the cast alloy section and the additive manufacturing section form at least a portion of an outer surface of the component. The method of forming a component includes removing a portion of an existing component, the removing of the portion forming an open section in the existing component, forming an article through an additive manufacturing technique, the article having a shape and geometry arranged and disposed to fill the open section in the existing component, and securing the article within the open section of the existing component to form the component. Another method includes directly depositing a material, by an additive manufacturing technique, over a portion of the existing component.
Abstract:
A process of treating a component includes mechanically removing surface debris from a base coating of the component, identifying at least one surface feature in the base coating, and applying an overlay coating layer over the surface feature of the base coating without stripping off the base coating. A process of treating a gas turbine component includes mechanically removing surface debris from a base coating of the gas turbine component, identifying at least one surface feature in the base coating of corrosion pits, dents, spalls, and combinations thereof, and applying an overlay coating layer over the surface feature of the base coating without stripping off the base coating. A treated gas turbine component includes a gas turbine component substrate and a base coating on the gas turbine component substrate having at least one healed surface feature. The healed surface feature includes an overlay coating layer on the base coating.
Abstract:
A method of treatment includes laser-hardening a portion of a component and texturing a treated surface of the portion with a hydrophobic surface texture. In some embodiments, the method includes polishing the treated surface after laser-hardening the portion and prior to texturing the treated surface. A component includes a component body having a portion that is laser-hardened. The treated surface is hydrophobic with a hydrophobic surface texture. In some embodiments, the component is a turbine component. In some embodiments, the portion is a leading edge. A turbine system includes a turbine shaft and a turbine component attached to the turbine shaft. The turbine component includes a component body having a leading edge. The leading edge is laser-hardened and the treated surface of the leading edge is hydrophobic with a hydrophobic surface texture.