Abstract:
A coating process for applying a bifurcated coating to an article is disclosed including applying an aluminizing slurry to a first portion of the article, applying a chromizing slurry to a second portion of the article, and simultaneously heat treating the article, the aluminizing slurry, and the chromizing slurry. Heat treating the aluminizing slurry forms an aluminide coating on the first portion of the article and an aluminide diffusion zone between the article and the aluminide coating. Heat treating the chromizing slurry forms a chromide coating on the second portion of the article and a chromide diffusion zone between the article and the chromide coating. The first portion and the second portion are both maintained in an unmasked state while applying the aluminizing slurry and the chromizing slurry and during the heat treating.
Abstract:
A method for removing oxide materials from a crack of a metallic workpiece comprises: infiltrating an alkali solution into the crack in a pressurized atmosphere or an ultrasonic environment; applying an energy to the crack to react the oxide materials with the alkali solution and form a resultant material; and rinsing the resultant material with an acid solution to remove the resultant material from the crack. The method is easier to penetrate into the inside of the cracks, in particular suitable for cleaning narrow and deep cracks.
Abstract:
A method includes masking at least one hole of an article with a paste, wherein the hole opens onto a surface of the article, applying a coating to the surface of the article, and removing the paste including contacting the paste with water, leaving at least one open hole in the surface of the coated article. The paste includes about 40-80 wt % of a filler material, about 0.5-20 wt % of an inorganic binder, about 0.5-15 wt % of a polyhydroxy compound and about 5-25 wt % of water. The filler material includes a first material which includes alkali metal doped alumina, zirconium oxide, titanium oxide, silicon dioxide, or a combination thereof and a second material which includes a silicate. A weight ratio between the first and second materials is in a range of about 1-10.
Abstract:
A method for removing oxide from a metallic substrate is described. The method includes providing a stream of boron trifluoride; heating the metallic substrate at a first temperature; and heating the metallic substrate at a second temperature different from the first temperature. An associated apparatus is also described.
Abstract:
A process for forming a thermal barrier coating system on a substrate is disclosed including preparing a slurry including a donor powder, an activator powder, and a binder. The donor powder includes a metallic aluminum alloy having a melting temperature higher than aluminum, and the binder includes at least one organic polymer gel. The process further includes applying the slurry to the substrate, heating the slurry to form an aluminide bond coating including an additive aluminide layer and an aluminide interdiffusion zone disposed between the substrate and the additive aluminide layer, and applying a thermal barrier coating to the aluminide bond coating. The thermal barrier coating may be a dense vertically-cracked thermal barrier coating, and the substrate may be a gas turbine component. Thermal barrier coating systems formed by the process are also disclosed.
Abstract:
A gas turbine engine component includes a substrate formed of a high temperature resistant material and a corrosion resistant layer. The corrosion resistant layer is inert to the molten salt impurities and includes a refractory metal vanadate of formula MxVyOz, wherein M is selected from the group consisting of alkaline earth metals, group IV and V transition metals, rare-earth metals and their combinations, and wherein z=x+2.5y, or z=1.5x+2.5y, or z=2x+2.5y.
Abstract:
A method includes masking at least one hole of an article with a paste, wherein the hole opens onto a surface of the article, applying a coating to the surface of the article, and removing the paste including contacting the paste with a water containing liquid/environment to dissolve or re-disperse the paste, leaving at least one open hole in the surface of the coated article. The paste includes about 20-80 wt % of a filler material, about 0.5-20 wt % of a hydrogen phosphate compound, about 0.5-15 wt % of a polyhydroxy compound and about 5-25 wt % of water. The filler material has an average particle size in a range of about 0.1-100 microns, and includes a first material which includes alkali metal doped alumina, zirconium oxide, titanium oxide or a combination thereof and a second material which includes a silicate. A weight ratio between the first and second materials is in a range of about 1-10.
Abstract:
A method for selective aluminide diffusion coating removal. The method includes diffusing aluminum into a substrate surface of a component to form a diffusion coating. The diffusion coating includes an aluminum-infused additive layer and an interdiffusion zone. The diffusion coating is solution heat treated at a temperature and for a time sufficient to dissolve at least a portion of the interdiffusion zone. Thereafter the aluminum-infused additive layer is selectively removed. An aluminide diffusion coated turbine component is also disclosed.
Abstract:
Stripping a metallic bond coat from an article using a wet chemical process. An article removed from service and having a metallic bond coat applied over a surface of its metallic substrate is provided. The metallic bond coat is used to improve the adhesion of a TBC to the article, so grit blasting to first remove any TBC applied over the bond coat and which still remains on the article initially may be required. The bond coated article is then immersed in an acid solution of HCl/H3PO4 at a predetermined temperature for a predetermined amount of time, the HCl/H3PO4 solution reacting with the bond coat applied over the metallic substrate to form a smut on the surface. The article is then removed from the HCl/H3PO4 solution and quickly immersed in a solution of NaOH for a predetermined amount of time to at least partially desmut the surface.
Abstract translation:使用湿化学工艺从制品上剥离金属粘结涂层。 提供了从其使用中去除并且在其金属基底的表面上施加金属粘结涂层的物品。 金属粘合涂层用于改善TBC与制品的粘合性,因此可能需要喷砂以首先去除施加在粘结涂层上并且仍然保留在制品上的任何TBC。 然后将粘合涂层制品在预定温度下浸入HCl / H 3 PO 4的酸性溶液中预定的时间,HCl / H 3 PO 4溶液与施加在金属基材上的粘合涂层反应,以在表面上形成黑斑。 然后将物品从HCl / H 3 PO 4溶液中取出并迅速浸入NaOH溶液中预定的时间以至少部分地去除表面。