Abstract:
A degree of polarization control device includes: a calcium fluoride crystal substrate for transmitting a laser beam; a polarization monitor for measuring the degree of polarization of a laser beam transmitted through the calcium fluoride crystal substrate; and a controller for controlling the rotation angle of the calcium fluoride crystal substrate according to the degree of polarization measured by the polarization monitor; the calcium fluoride crystal substrate being formed by a flat plate having a laser beam entering surface and a laser beam exiting surface running in parallel with the (111) crystal face, the Brewster angle being selected for the incident angle, the rotation angle around the [111] axis operating as a central axis being controlled by the controller.
Abstract:
An extreme ultraviolet light source apparatus generating an extreme ultraviolet light from plasma generated by irradiating a target material with a laser light within a chamber, and controlling a flow of ions generated together with the extreme ultraviolet light using a magnetic field or an electric field, the extreme ultraviolet light source apparatus comprises an ion collector device collecting the ion via an aperture arranged at a side of the chamber, and an interrupting mechanism interrupting movement of a sputtered particle in a direction toward the aperture, the sputtered particle generated at an ion collision surface collided with the ion in the ion collector device.
Abstract:
An extreme ultraviolet light generation device configured to generate extreme ultraviolet light by irradiating a target containing tin with a pulse laser beam includes a chamber container, a hydrogen gas supply unit configured to supply hydrogen gas into the chamber container, a heat shield disposed between the chamber container and a predetermined region in which the target is irradiated with the pulse laser beam inside the chamber container, a first cooling medium flow path disposed in the chamber container, a second cooling medium flow path disposed in the heat shield, and a cooling device configured to supply a first cooling medium to the first cooling medium flow path and supply a second cooling medium to the second cooling medium flow path so that a temperature of the heat shield becomes lower than a temperature of the chamber container.
Abstract:
An extreme ultraviolet light generation apparatus includes: a chamber in which plasma is generated from a target substance at a condensation position of a laser beam; a condenser mirror configured to condense extreme ultraviolet light generated by the plasma; and a magnetic field generation unit configured to generate a magnetic field that converges a charged particle generated by the plasma toward a wall of the chamber, the condenser mirror includes a substrate, a reflective layer, and a protective layer provided on the reflective layer, the protective layer has layer thickness distribution in which a layer thickness of the protective layer from a reflective layer surface changes, and the layer thickness of the protective layer is maximum at a position on a line (CL) on which a plane passing through a magnetic field axis of the magnetic field generation unit and a central axis (CA) of the condenser mirror intersects the reflective layer surface (62F).
Abstract:
An apparatus for generating extreme ultraviolet light used with a laser apparatus and connected to an external device so as to supply the extreme ultraviolet light thereto includes a chamber provided with at least one inlet through which a laser beam is introduced into the chamber; a target supply unit provided on the chamber configured to supply a target material to a predetermined region inside the chamber; a discharge pump connected to the chamber; at least one optical element provided inside the chamber; an etching gas introduction, unit provided on the chamber through which an etching gas passes; and at least one temperature control mechanism for controlling a temperature of the at least one optical element.
Abstract:
An extreme ultraviolet light generation system may include a beam focusing optics configured such that a pre-pulse laser beam and a main pulse laser beam are focused on a plasma generation region, and that a beam path axis of the pre-pulse laser beam and a beam path axis of the main pulse laser beam pass through the plasma generation region at an angle equal to or smaller than a loss-cone angle with respect to a central axis of a magnetic field that is generated by a magnetic field generator. A first laser apparatus and a second laser apparatus may be controlled such that, after a target outputted from a target generation unit has been irradiated with the pre-pulse laser beam in the plasma generation region, the target is irradiated with the main pulse laser beam with a delay time ranging from 0.5 μs or longer to 7 μs or shorter.
Abstract:
A cleaning method for an EUV light generation apparatus may include closing a connection portion so that a chamber interior and the interior of an exposure apparatus do not communicate when EUV light is not being generated, supplying an etchant gas for etching debris that has accumulated on a reflective surface of an optical element to the chamber interior in a state where the connection portion is closed, and exhausting the chamber interior using an exhaust apparatus while supplying the etchant gas.
Abstract:
A tin trap device for collecting tin in a chamber device which causes tin to be turned into plasma with laser light in an internal space thereof may include a housing provided with a gas inlet port through which exhaust gas in the chamber device flows and a gas exhaust port through which the exhaust gas is exhausted; and a main heater arranged in the housing, configured to have a temperature equal to or higher than the melting point of tin and lower than the boiling point thereof, and having a projection surface projected toward a direction in which the exhaust gas flows in the gas inlet port cover the gas inlet port.
Abstract:
An extreme ultraviolet light generating device may include a chamber, an EUV light focusing mirror provided therein, including a reflection surface having a concave curved shape and an outer peripheral portion around an outer edge of the reflection surface, and configured to focus EUV light radiated from plasma generated when a target is irradiated with laser light, a gas supplying device including peripheral heads provided on or along the outer peripheral portion; and a discharge device including a discharge path forming a discharge port near the outer peripheral portion, and configured to discharge an ion or a particle from the discharge port. The peripheral heads each may blow out a gas flow from the outer peripheral portion or a vicinity thereof along the reflection surface, and allow gas flows to join on the reflection surface to thereby form a gas flow along the reflection surface toward the discharge port.
Abstract:
An extreme ultraviolet light generation device may include a chamber in which extreme ultraviolet light is generated from plasma, the plasma generated by irradiation of a target supplied in a plasma generation region inside of the chamber with laser light; a condenser mirror collecting the extreme ultraviolet light and guiding it to outside of the chamber; a first etching gas supply unit blowing an etching gas to a reflective surface of the condenser mirror and the plasma generation region; a magnet forming a magnetic field in the chamber; a port that intersects a central axis of the magnetic field and that takes in suspended substances generated in the chamber; and an ejection path that is in communication with the port and that ejects the suspended substances taken from the port to the outside of the chamber.