Abstract:
The present disclosure relates to semiconductor structures and, more particularly, to electrostatic discharge (ESD) protection circuits and methods of use and manufacture. The structure includes: an electrostatic discharge (ESD) clamp which receives an input signal from a trigger circuit; and a voltage node connecting to a back gate of the ESD clamp, the voltage node providing a voltage to the ESD clamp during an electrostatic discharge (ESD) event.
Abstract:
There is set forth herein a field effect transistor (FET) configured as an ESD protection device. In one embodiment, the FET can be configured to operate in a snapback operating mode. The FET can include a semiconductor substrate, a gate formed on the substrate and a dummy gate formed on the substrate spaced apart from the gate.
Abstract:
There is set forth herein a semiconductor structure including a plurality of test devices, the plurality of test devices including a first test device and a second test device. A semiconductor structure can also include a waveform generating circuit, the waveform generating circuit configured for application of a first stress signal waveform having a first duty cycle to the first test device, and a second stress signal waveform having a second duty cycle to the second test device. A semiconductor structure can include a selection circuit associated with each of the first test device and the second test device for switching between a stress cycle and a sensing cycle.
Abstract:
There is set forth herein a field effect transistor (FET) configured as an ESD protection device. In one embodiment, the FET can be configured to operate in a snapback operating mode. The FET can include a semiconductor substrate, a gate formed on the substrate and a dummy gate formed on the substrate spaced apart from the gate.
Abstract:
An ESD device is provided for protecting a circuit from electrostatic discharge, and includes a planar diode having an anode and a cathode. The anode is electrically coupled to a signal path of the circuit, and the cathode is electrically coupled to a ground of the circuit. The ESD device is configured to be off during normal operation of the circuit and to turn on in response to an electrostatic discharge on the signal path. Two depletion regions in the device are separated by an isolation well. In response to the electrostatic discharge, the depletion regions modulate (e.g., widen and merge), providing a path for the discharge to the ground of the circuit.
Abstract:
Protecting non-planar output transistors from electrostatic discharge (ESD) events includes providing a non-planar semiconductor structure, the structure including a semiconductor substrate with a well of n-type or p-type. The provided non-planar structure further includes raised semiconductor structure(s) coupled to the substrate, non-planar transistor(s) of a type opposite the well, each transistor being situated on one of the raised structure(s), the non-planar transistor(s) each including a source, a drain and a gate, the non-planar structure further including parasitic bipolar junction transistor(s) (BJT(s)) on the raised structure(s), each BJT including a collector and an emitter situated on the raised structure and a base being the well, and a well contact for the base of the BJT. Protecting the non-planar output transistors further includes electrically coupling the drain of the non-planar transistor and the collector of the BJT to an output of a circuit, and electrically coupling the source of the non-planar transistor, the emitter of the BJT and the well contact to a ground of the circuit.