Abstract:
High-voltage semiconductor devices with electrostatic discharge (ESD) protection and methods of fabrication are provided. The semiconductor devices include a plurality of transistors on a substrate patterned with one or more common gates extending across a portion of the substrate, and a plurality of first S/D contacts and a plurality of second S/D contacts associated with the common gate(s). The second S/D contacts are disposed over a plurality of carrier-doped regions within the substrate. One or more floating nodes are disposed above the substrate and, at least in part, between second S/D contacts to facilitate defining the plurality of carrier-doped regions within the substrate. For instance, the carrier-doped regions may be defined from a mask with a common carrier-region opening, with the floating node(s) intersecting the common carrier-region opening and facilitating defining, along with the common opening, the plurality of separate carrier-doped regions.
Abstract:
Protecting non-planar output transistors from electrostatic discharge (ESD) events includes providing a non-planar semiconductor structure, the structure including a semiconductor substrate with a well of n-type or p-type. The provided non-planar structure further includes raised semiconductor structure(s) coupled to the substrate, non-planar transistor(s) of a type opposite the well, each transistor being situated on one of the raised structure(s), the non-planar transistor(s) each including a source, a drain and a gate, the non-planar structure further including parasitic bipolar junction transistor(s) (BJT(s)) on the raised structure(s), each BJT including a collector and an emitter situated on the raised structure and a base being the well, and a well contact for the base of the BJT. Protecting the non-planar output transistors further includes electrically coupling the drain of the non-planar transistor and the collector of the BJT to an output of a circuit, and electrically coupling the source of the non-planar transistor, the emitter of the BJT and the well contact to a ground of the circuit.
Abstract:
There is set forth herein a field effect transistor (FET) configured as an ESD protection device. In one embodiment, the FET can be configured to operate in a snapback operating mode. The FET can include a semiconductor substrate, a gate formed on the substrate and a dummy gate formed on the substrate spaced apart from the gate.
Abstract:
There is set forth herein a semiconductor structure including a plurality of test devices, the plurality of test devices including a first test device and a second test device. A semiconductor structure can also include a waveform generating circuit, the waveform generating circuit configured for application of a first stress signal waveform having a first duty cycle to the first test device, and a second stress signal waveform having a second duty cycle to the second test device. A semiconductor structure can include a selection circuit associated with each of the first test device and the second test device for switching between a stress cycle and a sensing cycle.
Abstract:
High-voltage semiconductor devices with electrostatic discharge (ESD) protection and methods of fabrication are provided. The semiconductor devices include a plurality of transistors on a substrate patterned with one or more common gates extending across a portion of the substrate, and a plurality of first S/D contacts and a plurality of second S/D contacts associated with the common gate(s). The second S/D contacts are disposed over a plurality of carrier-doped regions within the substrate. One or more floating nodes are disposed above the substrate and, at least in part, between second S/D contacts to facilitate defining the plurality of carrier-doped regions within the substrate. For instance, the carrier-doped regions may be defined from a mask with a common carrier-region opening, with the floating node(s) intersecting the common carrier-region opening and facilitating defining, along with the common opening, the plurality of separate carrier-doped regions.
Abstract:
Methods to forming trigger-voltage tunable cascode transistors for an ESD protection circuit in FinFET IC devices and resulting devices. Embodiments include providing a substrate including adjacent first-type well areas, over the substrate, each pair of first-type well areas separated by a second-type well area; providing one or more junction areas in each first and second type well area, each junction area being a first type or a second type; forming fins, spaced from each other, perpendicular to and over the first and second type junction areas; and forming junction-type devices by forming electrical connections between the first and second type junction areas in the first-type well areas and the substrate, wherein a first-stage junction-type device in a first-type well area includes stacked first and second type junction areas, and wherein the first-stage junction-type device is adjacent a second-type well area including first and second type junction areas.
Abstract:
There is set forth herein a field effect transistor (FET) configured as an ESD protection device. In one embodiment, the FET can be configured to operate in a snapback operating mode. The FET can include a semiconductor substrate, a gate formed on the substrate and a dummy gate formed on the substrate spaced apart from the gate.
Abstract:
An ESD device is provided for protecting a circuit from electrostatic discharge, and includes a planar diode having an anode and a cathode. The anode is electrically coupled to a signal path of the circuit, and the cathode is electrically coupled to a ground of the circuit. The ESD device is configured to be off during normal operation of the circuit and to turn on in response to an electrostatic discharge on the signal path. Two depletion regions in the device are separated by an isolation well. In response to the electrostatic discharge, the depletion regions modulate (e.g., widen and merge), providing a path for the discharge to the ground of the circuit.