Abstract:
There is set forth herein a field effect transistor (FET) configured as an ESD protection device. In one embodiment, the FET can be configured to operate in a snapback operating mode. The FET can include a semiconductor substrate, a gate formed on the substrate and a dummy gate formed on the substrate spaced apart from the gate.
Abstract:
Co-fabrication of a radio-frequency (RF) semiconductor device with a three-dimensional semiconductor device includes providing a starting three-dimensional semiconductor structure, the starting structure including a bulk silicon semiconductor substrate, raised semiconductor structure(s) coupled to the substrate and surrounded by a layer of isolation material. Span(s) of the layer of isolation material between adjacent raised structures are recessed, and a layer of epitaxial semiconductor material is created over the recessed span(s) of isolation material over which another layer of isolation material is created. The RF device(s) are fabricated on the layer of isolation material above the epitaxial material, which creates a local silicon-on-insulator, while the three-dimensional semiconductor device(s) can be fabricated on the raised structure(s).
Abstract:
A symmetrical lateral bipolar junction transistor (SLBJT) is provided. The SLBJT includes a p-type semiconductor substrate, a n-type well, an emitter of a SLBJT situated in the n-type well, a base of the SLBJT situated in the n-type well and spaced from the emitter by a distance on one side of the base, a collector of the SLBJT situated in the n-type well and spaced from the base by the distance on an opposite side of the base, and an electrical connection to the substrate outside the n-type well. The SLBJT is used to characterize a transistor in a circuit by electrically coupling the SLBJT to a gate of the test transistor, applying a voltage to the gate, and characterizing aspect(s) of the test transistor under the applied voltage. The SLBJT protects the gate against damage to the gate dielectric.
Abstract:
A non-planar diode is fabricated, with an n- or p-type raised structure, such as a fin, coupled to the substrate. A well of an opposite type is located under the raised structure, along with an area having additional impurity, located directly under the raised structure, and within the well. This additional implant creates a p-n junction within the substrate, the non-planar diode having an ideality factor in a range of 1 to about 1.05.
Abstract:
The present disclosure relates to semiconductor structures and, more particularly, to high voltage diode structures and methods of manufacture. The structure includes: a diode structure composed of first well of a first dopant type in a substrate; and a well ring structure of the first dopant type in the substrate which completely surrounds the first well of the first dopant type, and spaced a distance “x” from the first well to cut a leakage path to a shallower second well of a second dopant type.
Abstract:
A structure, including a bipolar junction transistor and method of fabrication thereof, is provided herein. The bipolar junction transistor includes: a substrate including a substrate region having a first conductivity type; an emitter region over a first portion of the substrate region, the emitter region having a second conductivity type; a collector region over a second portion of the substrate region, the collector region having the second conductivity type; and, a base region overlie structure disposed over, in part, the substrate region. The base region overlie structure separates the emitter region from the collector region and aligns to a base region of the bipolar junction transistor within the substrate region, between the first portion and the second portion of the substrate region.
Abstract:
A non-planar Schottky diode includes a semiconductor substrate of a first type, the first type including one of n-type and p-type. The structure further includes raised semiconductor structure(s) of a second type opposite the first type coupled to the substrate, isolation material surrounding a lower portion of the raised structure(s), a first well of the second type directly under the raised structure(s), a guard ring of the first type around an edge of a top portion of the first well, a conformal layer of silicide over a top portion of the raised structure(s) above the isolation material, and a common contact above the conformal layer of silicide. The non-planar Schottky diode can be fabricated with non-planar transistors, e.g., FinFETs.
Abstract:
Methods for making high voltage IC devices utilizing a fin-type process and resulting devices are disclosed. Embodiments include forming two pluralities of silicon fins on a substrate layer, separated by a space, wherein adjacent silicon fins are separated by a trench; forming an oxide layer on the substrate layer and filling a portion of each trench; forming two deep isolation trenches into the oxide layer and the substrate layer adjacent to the two pluralities of silicon fins; forming a graded voltage junction by implanting a dopant into the substrate layer below the two pluralities of silicon fins; forming a gate structure on the oxide layer and between the two pluralities of silicon fins; implanting a dopant into and under the two pluralities of silicon fins, forming source and drain regions; and forming an epitaxial layer onto the two pluralities of silicon fins to form merged source and drain fins.
Abstract:
Methods are presented for fabricating nanowire structures, such as one or more nanowire field effect transistors. The methods include, for instance: providing a substrate and forming a fin above the substrate so that the fin has a first sidewall including one or more elongate first sidewall protrusions and a second sidewall including one or more elongate second sidewall protrusions, with the one or more elongate second sidewall protrusions being substantially aligned with the one or more elongate first sidewall protrusions; and, anisotropically etching the fin with the elongate first sidewall protrusions and the elongate second sidewall protrusions to define the one or more nanowires. The etchant may be chosen to selectively etch along a pre-defined crystallographic plane, such as the (111) crystallographic plane, to form the nanowire structures.
Abstract:
There is set forth herein a field effect transistor (FET) configured as an ESD protection device. In one embodiment, the FET can be configured to operate in a snapback operating mode. The FET can include a semiconductor substrate, a gate formed on the substrate and a dummy gate formed on the substrate spaced apart from the gate.