Abstract:
Devices and methods of creating elastic relaxation of epitaxially grown lattice mismatched films for semiconductor devices are provided. One method includes, for instance: obtaining a wafer including a substrate; epitaxially growing at least one first silicon germanium (SiGe) layer over the wafer; and epitaxially growing at least one second SiGe layer over the at least one first SiGe layer. One device includes, for instance: a wafer including a substrate; at least one first layer of semiconductor material disposed over the wafer; at least one second layer of semiconductor material disposed over the at least one first layer of semiconductor material; and at least one first and second openings, each opening extending through the at least one second layer of semiconductor material, the at least one first layer of semiconductor material, and a portion of the substrate.
Abstract:
The present disclosure relates to semiconductor structures and, more particularly, to uniform semiconductor nanowire and nanosheet light emitting diodes and methods of manufacture. The structure includes a buffer layer; at least one dielectric layer on the buffer layer, the at least one dielectric layer having a plurality of openings exposing the buffer layer; and a plurality of uniformly sized and shaped nanowires or nanosheets formed in the openings and extending above the at least one dielectric layer.
Abstract:
The present disclosure generally relates to semiconductor structures and, more particularly, to light emitting diode (LED) structures and methods of manufacture. The method includes: forming a buffer layer on a substrate, the buffer layer having at least a lattice mismatch with the substrate; and relaxing the buffer layer by pixelating the buffer layer into discrete islands, prior to formation of a quantum well.
Abstract:
The present disclosure relates to semiconductor structures and, more particularly, to integrated vertical transistors and light emitting diodes and methods of manufacture. The structure includes a vertically oriented stack of material having a light emitting diode (LED) integrated with a source region and a drain region of a vertically oriented active device.