Abstract:
Methods for fabricating integrated circuits are provided. One method includes decomposing a master pattern layout for a semiconductor device layer that includes a target metal line with a target interconnecting via/contact into a first sub-pattern and a second sub-pattern. The target metal line is decomposed into a first line feature pattern that is part of the first sub-pattern and a second line feature pattern that is part of the second sub-pattern such that the first and second line feature patterns have overlapping portions defining a stitch that corresponds to the target interconnecting via/contact. A first photomask is generated that corresponds to the first sub-pattern. A second photomask is generated that corresponds to the second sub-pattern.
Abstract:
Methods for fabricating integrated circuits are provided. In one example, a method for fabricating an integrated circuit includes forming a graphoepitaxy DSA directing confinement well using a sidewall of an etch layer that overlies a semiconductor substrate. The graphoepitaxy DSA directing confinement well is filled with a block copolymer. The block copolymer is phase separated into an etchable phase and an etch resistant phase. The etchable phase is etched while leaving the etch resistant phase substantially in place to define an etch mask with a nanopattern. The nanopattern is transferred to the etch layer.
Abstract:
Semiconductor devices and methods of fabricating the semiconductor devices with cross coupled contacts using patterning for cross couple pick-up are disclosed. One method includes, for instance: obtaining an intermediate semiconductor device; performing a first lithography to pattern a first shape; performing a second lithography to pattern a second shape overlapping a portion of the first shape; processing the first shape and the second shape to form an isolation region at the overlap; and forming four regions separated by the isolation region. An intermediate semiconductor device is also disclosed.
Abstract:
Methods for fabricating integrated circuits are provided. One method includes decomposing a master pattern layout for a semiconductor device layer that includes a target metal line with a target interconnecting via/contact into a first sub-pattern and a second sub-pattern. The target metal line is decomposed into a first line feature pattern that is part of the first sub-pattern and a second line feature pattern that is part of the second sub-pattern such that the first and second line feature patterns have overlapping portions defining a stitch that corresponds to the target interconnecting via/contact. A first photomask is generated that corresponds to the first sub-pattern. A second photomask is generated that corresponds to the second sub-pattern.
Abstract:
A method for fabricating a finFET integrated circuit includes providing a finFET integrated circuit structure including a fin structure, a replacement metal gate structure having a silicon nitride cap disposed over and in contact with the fin structure, a contact structure including a tungsten material also disposed over and in contact with the fin structure, and an insulating layer disposed over the replacement metal gate structure and the contact structure. The method further includes forming a first opening in the insulating layer over the replacement gate structure and a second opening in the insulating layer over the contact structure. Forming the first and second openings includes exposing the FinFET integrated circuit structure to a single extreme ultraviolet lithography patterning. Still further, the method includes removing a portion of the silicon nitride material of the replacement metal gate structure and forming a metal fill material in the first and second openings.
Abstract:
Methods and computer program products for decomposing and etching a circuit pattern layout are provided. The methods may include decomposing a circuit pattern layout into a first sub-pattern and second sub-pattern, where the decomposing includes: identifying, from the circuit pattern layout, a design line and a design via location associated with the design line; forming a first pattern line for the first sub-pattern corresponding to a first portion of the design line, and a second pattern line for the second sub-pattern corresponding to a second portion of the design line, with the first and second pattern lines overlapping at the design via location in an overlay of the first sub-pattern with the second sub-pattern. The first sub-pattern may be etched in a first circuit structure layer and the second sub-pattern etched in a second circuit structure layer, the etching at least partially forming a via at the design via location.
Abstract:
A method for fabricating a finFET integrated circuit includes providing a finFET integrated circuit structure including a fin structure, a replacement metal gate structure having a silicon nitride cap disposed over and in contact with the fin structure, a contact structure including a tungsten material also disposed over and in contact with the fin structure, and an insulating layer disposed over the replacement metal gate structure and the contact structure. The method further includes forming a first opening in the insulating layer over the replacement gate structure and a second opening in the insulating layer over the contact structure. Forming the first and second openings includes exposing the FinFET integrated circuit structure to a single extreme ultraviolet lithography patterning. Still further, the method includes removing a portion of the silicon nitride material of the replacement metal gate structure and forming a metal fill material in the first and second openings.