Abstract:
A methodology for a thin, flexible substrate having integrated passive circuit elements, and the resulting device are disclosed. Embodiments may include integrating one or more passive circuit components on a first or second surface of a substrate, and interconnecting one or more integrated circuit (IC) dies on a second surface of the interposer to the one or more passive circuit components with one or more metal-filled vias between the first and second surfaces, the first and second surfaces being opposite surfaces of the substrate.
Abstract:
Exemplary embodiments of the present invention provide a V0 via unit cell with multiple keep out zones. The keep out zones are oriented concentrically and provide support for multiple sizes of through-silicon vias (TSVs). An off-center alignment between the V0 via unit cell and a probe pad is used to improve contact between the V0 vias and a probe pad. During a chip redesign, the TSV size may be changed without the need to revise the V0 mask.
Abstract:
Methods for integrating MOL TSVs in 3D SoC devices including face-to-face bonded IC chips. Embodiments include providing a device layer in each of IC chips on upper surfaces of top and bottom silicon wafers; forming, subsequent to the device layer, through-silicon vias (TSVs) extending through an upper surface of the device layer in each of the IC chips and into the bottom Si wafer; forming, subsequent to the TSVs, a dielectric layer on the upper surface of the device layer in each of the IC chips of the top and bottom Si wafers; forming a back-end-of-line metal layer in the dielectric layer of each of the IC chips of the top and bottom Si wafers; face-to-face bonding of opposing IC chips of the top and bottom Si wafers; and dicing adjacent bonded IC chips through vertically aligned dicing lanes in the top and bottom Si wafers.