Abstract:
Provided is a semiconductor device that includes a semiconductor substrate and a 10 to 40 Å thick high-k dielectric layer that contains one or both of hafnium dioxide (HfO2) and zirconium dioxide (ZrO2). The high-k dielectric layer is disposed on the semiconductor substrate, and it contains at least some tetragonal phase HfO2 and/or tetragonal phase ZrO2. Also provided are methods for making the semiconductor device, and electronic devices that employ the semiconductor device.
Abstract:
Methodologies and resulting devices are provided for modified FET threshold voltages. Embodiments include: providing an active region of a transistor on a semiconductor substrate; depositing a workfunction metal on the active region; and modifying a threshold voltage of the transistor by treating the workfunction metal with oxygen. Other embodiments include: providing first and second active regions in a semiconductor substrate for first and second transistors, respectively; forming a first workfunction metal on the first active region; forming a second workfunction metal on the second active region; and modifying a first threshold voltage level of the first transistor, a second threshold voltage level of the second transistor, or a combination thereof by treating the first workfunction metal, second workfunction metal, or a combination thereof with oxygen, wherein the second threshold voltage level is greater than the first threshold voltage level.
Abstract:
A range of lowest, low and regular threshold voltages are provided to three p-type devices and three n-type devices co-fabricated on a same substrate. For the p-type devices, the range is achieved for the lowest using an additional thick layer of a p-type work function metal in a gate structure and oxidizing it, the low Vt is achieved with the thick p-type work function metal alone, and the regular Vt is achieved with a thinner layer of the p-type work function metal. For the n-type devices, the lowest Vt is achieved by implanting tantalum nitride with arsenic, argon, silicon or germanium and not adding any of the additional p-type work function metal in the gate structure, the low Vt is achieved by not adding the additional p-type work function metal, and the regular Vt is achieved with a thinnest layer of the p-type work function metal.
Abstract:
A range of lowest, low and regular threshold voltages are provided to three p-type devices and three n-type devices co-fabricated on a same substrate. For the p-type devices, the range is achieved for the lowest using an additional thick layer of a p-type work function metal in a gate structure and oxidizing it, the low Vt is achieved with the thick p-type work function metal alone, and the regular Vt is achieved with a thinner layer of the p-type work function metal. For the n-type devices, the lowest Vt is achieved by implanting tantalum nitride with arsenic, argon, silicon or germanium and not adding any of the additional p-type work function metal in the gate structure, the low Vt is achieved by not adding the additional p-type work function metal, and the regular Vt is achieved with a thinnest layer of the p-type work function metal.