Abstract:
An engine control system for an auto-stop/start vehicle includes an auto-stop/start module that generates an auto-stop command for shutting down an engine while an ignition is ON and subsequently generates an auto-start command for re-starting the engine. The system includes an actuator control module that disables an engine load, parks exhaust and intake cam phasers, disables fuel, sets a first throttle opening, monitors a crankshaft rotational position, speed, and deceleration, sets a second throttle opening for a predetermined duration if a piston simultaneously crosses a target position below a target engine speed and below a target degrees of rotation remaining, sets a third throttle opening, and determines if an engine speed is below a threshold speed before setting a fourth throttle opening when the engine speed is below the threshold speed, and causes the piston to rest in a predetermined position range.
Abstract:
A system according to the principles of the present disclosure includes a start-stop module, a pre-ignition risk module, and a cooling control module. The start-stop module stops and restarts an engine independent from an input received from an ignition system. The pre-ignition risk module monitors a risk of pre-ignition when the engine is restarted and generates a signal based on the risk of pre-ignition. The cooling control module controls a cooling system to circulate coolant through the engine when the engine is stopped in response to the risk of pre-ignition.
Abstract:
A system according to the principles of the present disclosure includes a start-stop module, a pre-ignition risk module, and a cooling control module. The start-stop module stops and restarts an engine independent from an input received from an ignition system. The pre-ignition risk module monitors a risk of pre-ignition when the engine is restarted and generates a signal based on the risk of pre-ignition. The cooling control module controls a cooling system to circulate coolant through the engine when the engine is stopped in response to the risk of pre-ignition.
Abstract:
An engine control system for a vehicle includes a shutdown control module that generates a command to shut down an engine of the vehicle when at least one of: a driver requests the shutdown of the engine via an ignition system; and when one or more predetermined conditions are satisfied for shutting down the engine without the driver requesting shutdown of the engine via the ignition system. A valve control module, when the command to shut down the engine is generated, advances an exhaust camshaft phaser based on a predetermined exhaust park position. When the exhaust camshaft phaser is in the predetermined exhaust park position, an exhaust valve of a cylinder is fully closed during an exhaust stroke of the cylinder before a piston of the cylinder reaches a topmost position for a next intake stroke of the cylinder.
Abstract:
A system according to the principles of the present disclosure includes a stop-start module and a fuel control module. The stop-start module stops an engine and thereby interrupts an engine cycle when a driver depresses a brake pedal while an ignition system is on and the engine is idling. The stop-start module restarts the engine when the driver releases the brake pedal. The fuel control module, when the engine is restarted, selectively injects fuel into a cylinder of the engine as the cylinder completes the interrupted engine cycle based on an amount of crankshaft rotation corresponding to a difference between a position of a piston in the cylinder when the piston is stopped and top dead center.
Abstract:
An engine control system for an auto-stop/start vehicle includes an auto-stop/start module that generates an auto-stop command for shutting down an engine while an ignition is ON and subsequently generates an auto-start command for re-starting the engine. The system includes an actuator control module that disables an engine load, parks exhaust and intake cam phasers, disables fuel, sets a first throttle opening, monitors a crankshaft rotational position, speed, and deceleration, sets a second throttle opening for a predetermined duration if a piston simultaneously crosses a target position below a target engine speed and below a target degrees of rotation remaining, sets a third throttle opening, and determines if an engine speed is below a threshold speed before setting a fourth throttle opening when the engine speed is below the threshold speed, and causes the piston to rest in a predetermined position range.
Abstract:
A system according to the principles of the present disclosure includes a stop-start module and a fuel control module. The stop-start module stops an engine and thereby interrupts an engine cycle when a driver depresses a brake pedal while an ignition system is on and the engine is idling. The stop-start module restarts the engine when the driver releases the brake pedal. The fuel control module, when the engine is restarted, selectively injects fuel into a cylinder of the engine as the cylinder completes the interrupted engine cycle based on an amount of crankshaft rotation corresponding to a difference between a position of a piston in the cylinder when the piston is stopped and top dead center.