Abstract:
A tensioner device for a belt or chain defines a housing defining a bore with a plunger disposed in the bore. A spring is engaged with the plunger for biasing the plunger in an outward direction. The housing further includes an oil chamber connected to an oil passage in communication with the oil chamber for delivering pressurized oil to the oil chamber, wherein when the oil chamber is pressurized the pressurized oil applies a counter force opposing a force of the spring.
Abstract:
An engine front cover assembly includes a plastic engine cover. A metal insert is secured within the plastic engine cover and defines a bore configured to receive a rotating engine component. A seal is located in a seal seat defined within the bore of the metal insert and configured to sealingly engage the rotating engine component. The metal insert is overmolded within the plastic engine cover and serves as a datum point to properly locate the seal relative to the rotating engine component.
Abstract:
A positive crankcase ventilation system for an internal combustion engine (ICE) includes an engine crankcase, an intake manifold disposed in downstream gas flow communication with the engine crankcase, an air induction system disposed in upstream gas flow communication with the engine crankcase, and a vacuum pump disposed in gas flow communication between the air induction system and the engine crankcase. Operation of the vacuum pump facilitates air flow from the air induction system to the engine crankcase, and from the engine crankcase to the intake manifold.
Abstract:
A turbocharged motor vehicle engine system includes an engine having an intake manifold, an exhaust manifold, and a crankcase ventilation outlet. A turbocharger includes a turbine having an inlet fluidly connected to the exhaust manifold through an exhaust conduit and a turbo compressor having an outlet fluidly connected to the intake manifold through an inlet conduit. The turbo compressor also includes an inlet. A crankcase gas conditioning member includes an inlet section fluidly connected to the crankcase ventilation outlet and an outlet section fluidly connected to the turbo compressor inlet. An idle bypass conduit includes an inlet portion fluidly connected to the outlet section of the crankcase gas conditioning member and an outlet portion fluidly connected to the inlet conduit. The idle bypass conduit is configured and disposed to selectively bypass the turbo charger while the engine is operating at an idle.
Abstract:
An engine assembly includes an engine and an intake assembly. The engine defines a combustion chamber and a crankcase, and the intake assembly includes an intake manifold in fluid communication with the combustion chamber. An air-oil separator is provided with the engine and defines a separator volume, an inlet and an outlet, where each of the inlet and outlet are in fluid communication with the separator volume. The inlet of the air-oil separator is provided in fluid communication with the crankcase, and the outlet of the air-oil separator is provided in fluid communication with the intake manifold. The air-oil separator further includes an interior surface that abuts and surrounds the separator volume, and defines a plurality of depressions, and each depression is respectively configured to retain a respective volume of fluid.
Abstract:
A positive crankcase ventilation system for an internal combustion engine (ICE) includes an engine crankcase, an intake manifold disposed in downstream gas flow communication with the engine crankcase, an air induction system disposed in upstream gas flow communication with the engine crankcase, and a vacuum pump disposed in gas flow communication between the air induction system and the engine crankcase. Operation of the vacuum pump facilitates air flow from the air induction system to the engine crankcase, and from the engine crankcase to the intake manifold.
Abstract:
An engine assembly includes an engine block that defines a cylinder bore. A reciprocating piston is disposed in the cylinder bore, and has a first side and a second side. The first side cooperates with the engine block to partially define a combustion chamber, and the second side is opposite the first side. A piston squirter is disposed adjacent to the second side of the piston and configured to expel a received flow of engine oil onto the piston. A thermal fluid valve is disposed in fluid communication with the piston squirter and is configured to selectively restrict the flow of engine oil to the piston squirter in response to a temperature of the engine oil.
Abstract:
An engine efficiency system for a vehicle includes an electromechanically operated oil distribution device disposed proximate an oil environment of the vehicle. Also included is a current detection system for detecting a current change rate of the electromechanically operated oil distribution device, wherein the current change rate corresponds to a viscosity of an oil disposed in the oil environment of the vehicle. Further included is at least one efficiency device activated over a range of the viscosity of the oil.
Abstract:
An internal combustion engine includes an engine assembly and an oil containment system attachable to the assembly. The oil containment system includes a cover component including an oil fill apparatus configured for conducting an oil to the internal combustion engine. The apparatus has a first end sealable with a cap, a second end spaced apart from the first end along a central longitudinal axis, and an annular wall concentric with and extending along the central longitudinal axis. The annular wall defines a first passage therethrough and a channel extending through the cover component along the central longitudinal axis. The oil containment system also includes a baffle component abutting the second end and defining a second passage therethrough such that the second passage is spaced apart from the channel.
Abstract:
A camshaft-drive tensioner system is disclosed for an internal combustion engine having a camshaft-drive element. The camshaft-drive tensioner system includes a tensioner configured to be energized by a pressurized fluid in order to apply a force to the camshaft-drive element. The camshaft-drive tensioner system also includes a fluid pump configured to supply the pressurized fluid. The camshaft-drive tensioner system additionally includes a controller configured to regulate either volume or pressure of the fluid supplied to the tensioner by the fluid pump to thereby selectively vary the force applied to the camshaft-drive element. An internal combustion engine having such a camshaft-drive tensioner system and a method of selectively varying a force applied to the camshaft-drive element are also disclosed.