Abstract:
According to one embodiment, a casing of a hazard detector includes a body portion and a button portion. The button portion is coupled with the body portion via a plurality of arms. The arms allow the button portion to be axially movable relative to the body portion and also couple the button portion with the body portion so that tabs that extend radially outward from the button portion are positioned under and contact an inwardly facing surface of the body portion. The arms bias the button portion axially outward relative to the body portion so as maintain contact between the tabs and the inwardly facing surface. In this configuration, when the button portion is pressed at a position off-axis from a central axis of the button portion, the button portion pivots about one or more contact points between one or more tabs and the inwardly facing surface.
Abstract:
An occupancy sensing electronic thermostat is described that includes a thermostat body, an electronic display that is viewable by a user in front of the thermostat, a passive infrared sensor for measuring infrared energy and an infrared energy directing element formed integrally with a front surface of the thermostat body. The passive infrared sensor may be positioned behind the infrared energy directing element such that infrared energy is directed thereonto by the infrared energy directing element. The thermostat may also include a temperature sensor and a microprocessor programmed to detect occupancy based on measurements from the passive infrared sensor.
Abstract:
A system including a thermostat user interface for a network-connected thermostat is described. The system includes a thermostat including a frustum-shaped shell body having a circular cross-section and a circular rotatable ring, which is user rotatable for adjusting a setting of the thermostat. The system further includes a client application that is operable on a touch-screen device separate from the thermostat, that displays a graphical representation of a circular dial, that detects a user-input motion proximate the graphical representation, that determines a user-selected setpoint temperature value based on the user-input motion, that displays a numerical representation of the user-selected setpoint temperature value, and that wirelessly transmits to the thermostat data representative of the user-selected setpoint temperature.
Abstract:
A sleek, low-profile wall-mountable thermostat for controlling an HVAC system is described. The thermostat includes a ring-shaped controller that rotates about a central axis, and an optical sensor directed away from the central axis and toward a radially inward-facing surface of the ring-shaped controller so as to accurately detect optical signals indicating controller's rotational movement.
Abstract:
A thermostat user interface for a network-connected thermostat is described. The thermostat includes a frustum-shaped shell body having a circular cross-section and a sidewall extending between first and second ends, the second end being user-facing when the thermostat is wall-mounted; a circular rotatable ring being user rotatable for adjusting a setting of the thermostat; and a circular cover including a clear circular center portion surrounded by a painted outer portion. The clear circular center portion permits a corresponding circular portion of a non-circular dot-matrix color display element to be visible through the circular cover and the painted outer portion masks a remaining portion of the non-circular dot-matrix color display element so as to create a circular graphical user interface.
Abstract:
A sleek, low-profile wall-mountable thermostat for controlling an HVAC system is described. The thermostat includes a ring-shaped controller that rotates about a central axis, and an optical sensor directed away from the central axis and toward a radially inward-facing surface of the ring-shaped controller so as to accurately detect optical signals indicating controller's rotational movement.
Abstract:
An occupancy sensing electronic thermostat is described that includes a thermostat body, an electronic display that is viewable by a user in front of the thermostat, a passive infrared sensor for measuring infrared energy and an infrared energy directing element formed integrally with a front surface of the thermostat body. The passive infrared sensor may be positioned behind the infrared energy directing element such that infrared energy is directed thereonto by the infrared energy directing element. The thermostat may also include a temperature sensor and a microprocessor programmed to detect occupancy based on measurements from the passive infrared sensor.
Abstract:
According to one embodiment, a multi-sensing hazard detector for detecting potential dangers may include a back plate and a front casing that is coupled with the back plate to define a housing. A circuit board and a plurality of components may be positioned within the housing. The circuit board may be communicatively coupled with the components. The components may include, among other components, an alarm device, an occupancy sensor, and a smoke chamber. The alarm device may be activatable upon the detection of a potential hazard to warn an occupant of a potential danger, the occupancy sensor may be configured to detect the presence and/or movement of objects external to the hazard detector, and the smoke chamber may be configured to detect the presence of smoke to cause a triggering of the alarm device. The housing may comprise a volume of less than 1024 cubic centimeters.
Abstract:
According to one embodiment, a multi-sensing hazard detector for detecting potential dangers may include a back plate and a front casing that is coupled with the back plate to define a housing. A circuit board and a plurality of components may be positioned within the housing. The circuit board may be communicatively coupled with the components. The components may include, among other components, an alarm device, an occupancy sensor, and a smoke chamber. The alarm device may be activatable upon the detection of a potential hazard to warn an occupant of a potential danger, the occupancy sensor may be configured to detect the presence and/or movement of objects external to the hazard detector, and the smoke chamber may be configured to detect the presence of smoke to cause a triggering of the alarm device. The housing may comprise a volume of less than 1024 cubic centimeters.
Abstract:
A thermostat user interface for a network-connected thermostat is described. The thermostat includes a frustum-shaped shell body having a circular cross-section and a sidewall extending between first and second ends, the second end being user-facing when the thermostat is wall-mounted; a circular rotatable ring being user rotatable for adjusting a setting of the thermostat; and a circular cover including a clear circular center portion surrounded by a painted outer portion. The clear circular center portion permits a corresponding circular portion of a non-circular dot-matrix color display element to be visible through the circular cover and the painted outer portion masks a remaining portion of the non-circular dot-matrix color display element so as to create a circular graphical user interface.