MICROORGANISMS AND METHODS FOR REDUCING BY-PRODUCTS

    公开(公告)号:US20230287435A1

    公开(公告)日:2023-09-14

    申请号:US17772990

    申请日:2020-10-28

    Abstract: The present disclosure provides microbial organisms having decreased production of unwanted by-products (e.g, pyruvate-, CO2—, TCA-derived by-products; acetate; ethanol; and/or, alanine) to enhance carbon flux through acetyl-CoA, which can increase production of acetyl-CoA derived compounds (e.g, 1,3-BDO, MMA, and (3R)-hydroxybutyl (3R)-hydroxybutyrate, or any other acetyl-CoA derived compounds), and products made from any of these compounds. Also provided are one or more exogenous nucleic acids encoding enzymes that can decrease production of unwanted by-products (e.g, aldehyde dehydrogenase, acetyl-CoA synthase, amino acid dehydrogenase, alanine racemase, and/or citrate synthase), and/or one or more gene attenuations occurring in genes (e.g., acetolactate synthase) that result in decreased production of unwanted by-products. Various combinations of the exogenous nucleic acids and gene deletions are also provided in the present disclosure. Methods of making and using the same, including methods for culturing cells, and for the production of the various products are also provided.

    Alcohol dehydrogenase variants
    4.
    发明授权

    公开(公告)号:US10563180B2

    公开(公告)日:2020-02-18

    申请号:US15027169

    申请日:2014-10-03

    Abstract: Described herein are non-natural NAD+-dependent alcohol dehydrogenases (ADHs) capable of at least two fold greater conversion of methanol or ethanol to formaldehyde or acetaldehyde, respectively, as compared to its unmodified counterpart. Nucleic acids encoding the non-natural alcohol dehydrogenases, as well as expression constructs including the nucleic acids, and engineered cells comprising the nucleic acids or expression constructs are described. Also described are engineered cells expressing a non-natural NAD+-dependent alcohol dehydrogenase, optionally include one or more additional metabolic pathway transgene(s), methanol metabolic pathway genes, target product pathway genes, cell culture compositions including the cells, methods for promoting production of the target product or intermediate thereof from the cells, compositions including the target product or intermediate, and products made from the target product or intermediate.

    ENGINEERED TRANS-ENOYL COA REDUCTASE AND METHODS OF MAKING AND USING

    公开(公告)号:US20220333142A1

    公开(公告)日:2022-10-20

    申请号:US17605120

    申请日:2020-04-24

    Abstract: Disclosed are trans-enoyl CoA reductase (TER) enzymes and nucleic acids encoding them. In some cases, the TER enzymes are non-natural, engineered trans-enoyl CoA reductase. TER enzymes were shown to catalyse the conversion of 5-carboxy-2-pentenoyl-CoA into adipyl-CoA for improved adipate production and the conversion of crotonyl-CoA into 6-aminocaproate. The enzymes can be used in biosynthetic methods and engineered microorganisms that enhance or improve the biosynthesis of 6-aminocaproate, hexamethylenediamine, caproic acid, caprolactone, or caprolactam. The engineered microorganisms include exogenous TER and in some cases engineered TER.

    PRENYLTRANSFERASE VARIANTS AND METHODS FOR PRODUCTION OF PRENYLATED AROMATIC COMPOUNDS

    公开(公告)号:US20230374473A1

    公开(公告)日:2023-11-23

    申请号:US18316993

    申请日:2023-05-12

    CPC classification number: C12N9/1085 C12P7/22 C12P7/42

    Abstract: Described herein are prenyltransferases including non-natural variants thereof having at least one amino acid substitution as compared to its corresponding natural or unmodified prenyltransferases and that are capable of at least two-fold greater rate of formation of cannabinoids such as cannabigerolic acid, cannabigerovarinic acid, cannabigerorcinic acid, and cannabigerol, as compared to a wild type control. Prenyltransferase variants also demonstrated regioselectivity to desired cannabinoid isomers such as CDBA (3-GOLA), 3-GDVA, 3-GOSA, and CBG (2-GOL). The prenyltransferase variants can be used to form prenylated aromatic compounds, and can be expressed in an engineered microbe having a pathway to such compounds, which include 3-GOLA, 3-GDVA, 3-GOSA, and CBG. 3-GOLA can be used for the preparation of cannabigerol (CBG), which can be used in therapeutic compositions.

Patent Agency Ranking