摘要:
An airflow control device comprises a body and an active material in operative communication with the body. The active material, such as shape memory material, is operative to change at least one attribute in response to an activation signal. The active material can change its shape, dimensions and/or stiffness producing a change in at least one feature of the airflow control device such as shape, dimension, location, orientation, and/or stiffness to control vehicle airflow to better suit changes in driving conditions such as weather, ground clearance and speed, while reducing maintenance and the level of failure modes. As such, the device reduces vehicle damage due to inadequate ground clearance, while increasing vehicle stability and fuel economy. An activation device, controller and sensors may be employed to further control the change in at least one feature of the airflow control device such as shape, dimension, location, orientation, and/or stiffness of the device. A method for controlling vehicle airflow selectively introduces an activation signal to initiate a change of at least one feature of the device that can be reversed upon discontinuation of the activation signal.
摘要:
A reversible energy absorbing assembly including a cellular lattice comprising a shape memory material disposed within an expandable interior region of the assembly, wherein the shape memory material is adapted to expand from a first configuration to an expanded configuration in response to fluid communication with a fluid source. Once expanded, the assembly effectively absorbs kinetic energy of an object upon impact with the assembly. The shape memory material can be thermally activated to restore the first configuration of the energy absorbing assembly. Methods of operating the energy absorbing assembly are also disclosed.
摘要:
An airflow control device comprises a body and an active material in operative communication with the body. The active material, such as shape memory material, is operative to change at least one attribute in response to an activation signal. The active material can change its shape, dimensions and/or stiffness producing a change in at least one feature of the airflow control device such as shape, dimension, location, orientation, and/or stiffness to control vehicle airflow to better suit changes in driving conditions such as weather, ground clearance and speed, while reducing maintenance and the level of failure modes. As such, the device reduces vehicle damage due to inadequate ground clearance, while increasing vehicle stability and fuel economy. An activation device, controller and sensors may be employed to further control the change in at least one feature of the airflow control device such as shape, dimension, location, orientation, and/or stiffness of the device. A method for controlling vehicle airflow selectively introduces an activation signal to initiate a change of at least one feature of the device that can be reversed upon discontinuation of the activation signal.
摘要:
A reversible energy absorbing assembly including a shape memory foam disposed within an interior region, wherein the shape memory foam is adapted to expand to an expanded configuration in response to fluid communication with a fluid source. The shape memory foam is a material selected from the group consisting of shape memory alloys and shape memory polymers. Once expanded, the assembly effectively absorbs kinetic energy of an object upon impact with the assembly. The shape memory foam can be thermally activated to restore the original configuration of the energy absorbing assembly. Methods of operating the energy absorbing assembly are also disclosed.
摘要:
Reversibly deployable energy absorbing assemblies for impact management generally include a translatable first element, a rigid support structure and a second element having one end fixedly attached to the rigid support structure and an other end fixedly attached to the translatable first element. The second elements are adapted to plastically deform along a predefined buckling path. The predefined buckling path may be uni-modal or multi-modal depending on the desired application and/or impact conditions. Also disclosed herein are methods for operating the energy absorbing assemblies.
摘要:
An airflow control device comprises a body and an active material in operative communication with the body. The active material, such as shape memory material, is operative to change at least one attribute in response to an activation signal. The active material can change its shape, dimensions and/or stiffness producing a change in at least one feature of the airflow control device such as shape, dimension, location, orientation, and/or stiffness to control vehicle airflow to better suit changes in driving conditions such as weather, ground clearance and speed, while reducing maintenance and the level of failure modes. As such, the device reduces vehicle damage due to inadequate ground clearance, while increasing vehicle stability and fuel economy. An activation device, controller and sensors may be employed to further control the change in at least one feature of the airflow control device such as shape, dimension, location, orientation, and/or stiffness of the device. A method for controlling vehicle airflow selectively introduces an activation signal to initiate a change of at least one feature of the device that can be reversed upon discontinuation of the activation signal.
摘要:
An airflow control device comprises a body and an active material in operative communication with the body. The active material, such as shape memory material, is operative to change at least one attribute in response to an activation signal. The active material can change its shape, dimensions and/or stiffness producing a change in at least one feature of the airflow control device such as shape, dimension, location, orientation, and/or stiffness to control vehicle airflow to better suit changes in driving conditions such as weather, ground clearance and speed, while reducing maintenance and the level of failure modes. As such, the device reduces vehicle damage due to inadequate ground clearance, while increasing vehicle stability and fuel economy. An activation device, controller and sensors may be employed to further control the change in at least one feature of the airflow control device such as shape, dimension, location, orientation, and/or stiffness of the device. A method for controlling vehicle airflow selectively introduces an activation signal to initiate a change of at least one feature of the device that can be reversed upon discontinuation of the activation signal.
摘要:
Active seal assemblies employing active materials that can be controlled and remotely changed to alter the seal effectiveness, wherein the active seal assemblies actively change modulus properties such as stiffness, shape orientation, and the like. In this manner, in seal applications such as a vehicle door application, door opening and closing efforts can be minimized yet seal effectiveness can be maximized.
摘要:
Door closure assist assemblies that assist in providing a final closing motion generally includes an extender portion comprised of an active material adapted to linearly expand in response to an activation signal and a releasable fastener having one component in movable communication with the extender portion and a second component attached to the other selected one of the door and doorframe. During operation, the door closure assist assembly provides the final closing action.
摘要:
Door closure assist assemblies that assist in providing a final closing motion generally includes an extender portion comprised of an active material adapted to linearly expand in response to an activation signal and a releasable fastener having one component in movable communication with the extender portion and a second component attached to the other selected one of the door and doorframe. During operation, the door closure assist assembly provides the final closing action.