Abstract:
An electronic control unit for a combustion engine having a water coolant passageway in heat transfer adjacency to the unit and adapted to remove heat from the unit. An ECU for combustion engine, comprising: electrical input circuits, electrical control circuits, electrical fuel injection output drive circuits, electrical oil pump output drive circuits and electrical ignition circuits. An ECU is disclosed which is adapted to verify firing of the ignition coils of the engine.
Abstract:
A control unit assembly is disclosed including a housing, at least one processor to control operation of an engine, and a voltage regulator configured to regulate a voltage of at least one rail of the engine. The at least one processing unit and the voltage regulator reside on a common circuit board.
Abstract:
An ignition system for an internal combustion engine, such as an outboard marine engine, which includes an advanced timing schedule, a non-advanced timing schedule, and a circuit for switching between the two schedules or disabling both schedules based upon engine operating conditions. The ignition system includes an optoelectronic time base generator which produces two sets of timing pulses relative to crankshaft position which are non-advanced timing pulses and advanced timing pulses. The time base generator comprises a LED-phototransistor pair and an encoder disk attached to the crankshaft with slots to interrupt the emission path between LED-phototransistor pair. The non-advanced pulses are generated based upon the trailing edge of each slot while the advanced pulses are generated based up the leading edge, wherein the width of the slots indicate the degree of advancement of the advanced schedule over the non-advanced schedule. Both schedules are inhibited based on a high overspeed condition and a low overspeed condition when the engine is overheated, wherein there is a smooth transition between the two conditions.
Abstract:
An electronic control unit for a combustion engine having a water coolant passageway in heat transfer adjacency to the unit and adapted to remove heat from the unit. An ECU for combustion engine, comprising: electrical input circuits, electrical control circuits, electrical fuel injection output drive circuits, electrical oil pump output drive circuits and electrical ignition circuits. An ECU is disclosed which is adapted to verify firing of the ignition coils of the engine.
Abstract:
An ignition system for an internal combustion engine, such as an outboard marine engine, which includes an advanced timing schedule, a normal timing schedule, and a circuit for switching between the two schedules or disabling both schedules based upon engine operating conditions. The ignition system includes an optoelectronic time base generator which produces two sets of timing pulses relative to crankshaft position which are normal timing pulses and advanced timing pulses. The time base generator comprises a LED-phototransistor pair and an encoder disk attached to the crankshaft with slots to interrupt the emission path between LED-phototransistor pair. The normal pulses are generated based upon the trailing edge of each slot while the advanced pulses are generated based up the leading edge, wherein the width of the slots indicate the degree of advancement of the advanced schedule over the normal schedule. Both schedules are inhibited based on a high overspeed condition and a low overspeed condition when the engine is overheated, wherein there is a smooth tarnsition between the two conditions.
Abstract:
The present invention is directed to an improved capacitive discharge ignition system for a two cylinder internal combustion engine, such as an outboard marine engine. The system is adapted to be located beneath the flywheel of the engine and has overspeed and overheat protection. The overheat protection is of the type which is automatically deactivated after the overheat condition dissipates, but the deactivation will only occur when the operator slows the engine to a reduced speed before resuming normal operation.
Abstract:
An improved engine ignition system for a marine engine or the like, which provides reliable start-up capability and running protection. The system detects the actual rotational speed of the engine and provides an electrical signal that is proportional to the measured speed, and selectively advances the ignition timing characteristic, and also controls overall engine speed to prevent engine damage that may be caused by an overspeed condition. The system advances the ignition timing characteristic during warm-up until a predetermined temperature is achieved, and also advances the ignition timing characteristic for a predetermined time period during initial running. The system utilizes the power of the battery during start-up to supplement the power that is generated by the stator coil which normally supplies all of the necessary power for the control circuitry of the ignition system.
Abstract:
A battery to be charged is connected to the stator winding output terminals of a permanent magnet alternator by way of two half-wave rectifier circuits. Each rectifier circuit has at least one controlled rectifier in series with the battery. The controlled rectifiers have gate terminals, respectively, for supplying a signal that renders them conductive. A semiconductor isolating or shut off switch, preferably a transistor switch, connects the battery terminal to a voltage divider circuit that develops two discrete voltage levels that are proportional to battery voltage. A zener diode circuit fed from the battery provides a stable reference voltage. A first comparator compares one of the voltages that corresponds with the battery voltage being a predetermined amount below full-charge condition with the zener reference voltage and if the reference voltage is exceeded, the comparator trips to turn on one of the SCR diode rectifiers for charging the battery at a relatively low rate with half-wave rectified dc. A second comparator compares a still lower voltage in the divider with the zener reference voltage and trips to effect turning on the other SCR diode to charge the battery additionally to the other SCR and the half-wave rectifier circuit in which it is connected. Thus, full wave charging occurs. If the battery is accidentally disconnected high voltage could develop on the alternator terminals. Disconnection turns off the isolating transistor and the controlled rectifiers lose their gating signals and turn off. High voltage across the alternator during the last half of the cycle before turn off is dissipated to ground by a zener diode.
Abstract:
An improved engine ignition system for a marine engine or the like, which provides reliable start-up capability. The system provides two timing characteristics for discharging a capacitive discharge ignition, one of which is advanced relative to the other. The advanced timing is invoked at startup and is switched to regular timing in response to the engine temperature reaching a predetermined temperature from a temperature switch and also as a result of a circuit having a thermistor near the engine. The thermistor circuit may operate if the temperature switch does not, due to debris or the like preventing proper operation of a thermostat.
Abstract:
A test and maintenance method and apparatus for an ignition system of an internal combustion engine, such as an outboard marine engine, which includes an advanced timing schedule, a nonadvanced timing schedule, and a circuit for switching between the two schedules or disabling both schedules based upon engine operating conditions. The ignition system includes an opto-electronic time base generator which produces two sets of timing pulses relative to crankshaft position which are nonadvanced timing pulses and advanced timing pulses. The time base generator comprises two LED phototransistor pairs and an encoder disk attached to the crankshaft with slots to interrupt the radiation path between each LED-phototransistor pair. The encoder disk is provided with a synchronizing slot, multiple timing slots associated with the cylinders of the engine, and a direction slot. The test function of the apparatus verifies the timing and sequence of timing pulses. The maintenance function of the apparatus provides a visual indication of reference locations such that the engine may be timed statically.