Abstract:
An engine ignition shutdown module includes a voltage regulator circuit connected to a key switch, and a pair of isolated MOSFET driver circuits connected to the voltage regulator circuit. Each MOSFET driver circuit charges a capacitor while the key switch is in a run position and the interlock switches are closed, and each capacitor discharges through a resistor for a time delay period once the key switch is moved from the run position to an off position or at least one of the interlock switches are opened. A pair of high voltage output MOSFET transistors are switched on while the capacitors discharge and provide an output to a magneto ignition for the time delay period.
Abstract:
A lawn care device may include an engine to selectively power the lawn care device, a frame supporting the engine of the lawn care device, an ignition system for selectively powering the lawn care device based at least in part on operation of an ignition interface controlled by a processor (310), an optical isolator (320) which detect the operational presence of the processor (310) and a shutdown circuit (300) which is able to ground out the ignition coil (360) as a function of the conductive state of the optical isolator (320); the shutdown circuit being powered by an ignition coil (360) of the ignition system to generate a failsafe condition in response to failure or loss of the processor (310).
Abstract:
A method for generating and applying at least one voltage pulse, which provides a cleaning effect for a stop switch, to a stop connection assigned to the stop switch, which stop connection is provided on a digitally controlled magnetic ignition circuit of an electrical device, wherein the magnetic ignition circuit generates a voltage wave series from half waves, the amplitude of which decreases over time, and/or at least one voltage pulse in a medium voltage range, wherein if a voltage wave series is generated, at least one later half wave in the voltage wave series, which half wave follows the first half wave temporally and therefore has a lower amplitude, is applied as a voltage pulse to the stop connection, and/or in that if at least one voltage pulse in a medium voltage range of 12 V to 50 V is generated, the one or more voltage pulses are applied to the stop connection and thereby exert a cleaning effect on the stop switch.
Abstract:
A fuel cock-integrated engine switch is provided that reduces wear resulting from mechanical contact and that can thereby enhance durability. A magnet 14 is provided in a lever 11 that is pivoted turnably between an ON position and an OFF position. A reed switch 12 connected to an ignition device 17 is arranged in the ON position. A shutoff valve 2 of a fuel passage is arranged in the OFF position of the lever 11. In the OFF position, the magnet 14 of the lever 11 approaches a valve 3 formed with a magnetic member, and the member 3 is shifted upward within the case 4 to shut off the fuel passage. When the lever 11 is operated to shift to the ON position, the valve 3 is shifted downward within the case 4 or receives a force applied by a spring to open the fuel passage.
Abstract:
A start safety circuit arrangement is incorporated into a work apparatus having an internal combustion engine. Combustion air and fuel are supplied to the combustion chamber by a control unit for the engine operation. The fuel/air mixture in the combustion chamber is ignited by an ignition plug. An operating mode selector has a start position for enriching the fuel/air mixture. A safety brake device in an operating mode brakes the work tool. A start position sensor is arranged on the operating mode selector and a brake position sensor is associated with the safety brake device. The status signal of the brake position sensor and the status signal of the start position sensor are combined to cause the control unit to disable the engine operation if the operating mode selector is in start position (III) and the safety brake device is in its standby mode (B).
Abstract:
An electrical ignition method for a combustion engine employing the use of an arrangement of several coils and a magnet wheel or magnet generator which rotates synchronously with the combustion engine, wherein the magnetic field of the magnet generator intermittently flows through the coils and therein generates a sequence of magnetic flux changes per revolution, whereby a sequence of corresponding alternating voltage half-waves is induced in the coils, which are used for charging an energy storage element. Through the use of a stop and/or switch-off system for the combustion engine, the disclosed method prevents a discharge of the energy storage element during the stopping and coast down procedure of the combustion engine and/or to actuate its charging, so that a charged energy storage element is available for the next start of the combustion engine.
Abstract:
An eco-run control device is mounted on a vehicle and is capable of performing eco-run control to stop an engine when predetermined stop requirements are satisfied and restart the engine when predetermined start requirements are satisfied later. This eco-run control device includes: a monitoring unit that monitors the state of an ignition; a communicating unit that communicates with a plurality of control devices that receive power supplies from a power supply line that is connected to a power source via the ignition; and an initialization controlling unit that initializes the data with respect to the eco-run control stored in a memory, when the monitoring unit determines that the ignition is in an OFF state, and that the communications with two or more of the control devices are interrupted.
Abstract:
An eco-run control device is mounted on a vehicle and is capable of performing eco-run control to stop an engine when predetermined stop requirements are satisfied and restart the engine when predetermined start requirements are satisfied later. This eco-run control device includes: a monitoring unit that monitors the state of an ignition; a communicating unit that communicates with a plurality of control devices that receive power supplies from a power supply line that is connected to a power source via the ignition; and an initialization controlling unit that initializes the data with respect to the eco-run control stored in a memory, when the monitoring unit determines that the ignition is in an OFF state, and that the communications with two or more of the control devices are interrupted.
Abstract:
In an engine which starts using a recoil starter, ignition chance during inertia rotation is not missed. If the engine 42 is rotated by the recoil starter 41, output of a power generator which is directly connected to the engine 42 is increased, and a CPU 27 is reset at timing t0. At timing t1, if pulse P1 is input from a revolution number sensor 29 to the CPU 27, the CPU 27 outputs first ignition instructions when predetermined time T1 is elapsed (t2). At timing t3, second pulse P2 is input. At that time point, since the CPU 27 is normally operated, ignition timing is obtained from an ignition timing map 30 in accordance with the revolution number calculated by a time interval between the pulses P1 and P2, and the ignition instructions are output at timing t4 in accordance with the ignition timing. Thereafter, the ignition timing is determined using the ignition timing map 30.
Abstract:
A control system for a low cost, light duty combustion engine, where the control system generally utilizes an engine speed input signal and independent operating sequences to determine a desired ignition timing. There are several independent operating sequences, each one of which is designed to optimally control the engine under certain conditions. These operating sequences include a Cranking sequence, a Warm Up sequence, a Normal Mode sequence, an Acceleration sequence, a Come Down sequence, a Recovery Bump sequence, and a Part Throttle sequence. During idling conditions, the Normal Mode sequence uses rapid changes in the ignition timing to maintain the engine speed in a small, idle engine speed range. By utilizing these operational sequences, the control system improves the performance of a low cost, light duty engine across a wide array of conditions.