摘要:
The techniques and mechanisms described herein are directed at transmitting elementary streams in a broadcast environment. The mechanisms provide a buffer controller and packet scheduler that allow a media format to be transmitted through the broadcasting environment in a manner resulting in a low channel switch delay. A buffer-fullness indicator allows the operation with various types of decoders. A lower bound and an upper bound are calculated for each frame within the elementary stream. The lower bound corresponds to an earliest time for sending the frame without causing an overflow condition within a decoder buffer. The upper bound corresponds to a latest time for sending the frame without causing an underflow condition within the decoder buffer. A send time is then scheduled based on the lower bound and the upper bound that determines when a packet associated with the frame is transmitted over a channel in a broadcast environment.
摘要:
The techniques and mechanisms described herein are directed at transmitting elementary streams in a broadcast environment. The mechanisms provide a buffer controller and packet scheduler that allow a media format to be transmitted through the broadcasting environment in a manner resulting in a low channel switch delay. A buffer-fullness indicator allows the operation with various types of decoders. A lower bound and an upper bound are calculated for each frame within the elementary stream. The lower bound corresponds to an earliest time for sending the frame without causing an overflow condition within a decoder buffer. The upper bound corresponds to a latest time for sending the frame without causing an underflow condition within the decoder buffer. A send time is then scheduled based on the lower bound and the upper bound that determines when a packet associated with the frame is transmitted over a channel in a broadcast environment.
摘要:
A video encoding system uses both a central processing unit (CPU) and a graphics processing unit (GPU) to perform video encoding. The system implements a technique that enables the GPU to perform motion estimation for video encoding. The technique allows the GPU to perform a motion estimation process in parallel with the video encoding process performed by the CPU. The performance of video encoding using such a system is greatly accelerated as compared to encoding using just the CPU. Also, data related to motion estimation is arranged and provided to the GPU in a way that utilizes the capabilities of the GPU. Data about video frames may be collocated to enable multiple channels of the GPU to process tasks in parallel. The depth buffer of the GPU may be used to consolidate repeated calculations and searching tasks during the motion estimation process.
摘要:
The systems and methods described herein are directed at accelerating video encoding using a graphics processing unit. In one aspect, a video encoding system uses both a central processing unit (CPU) and a graphics processing unit (GPU) to perform video encoding. The system implements a technique that enables the GPU to perform motion estimation for video encoding. The technique allows the GPU to perform a motion estimation process in parallel with the video encoding process performed by the CPU. The performance of video encoding using such a system is greatly accelerated as compared to encoding using just the CPU.In another aspect, data related to motion estimation is arranged and provided to the GPU in a way that utilizes the capabilities of the GPU. Data about video frames may be collocated to enable multiple channels of the GPU to process tasks in parallel. The depth buffer of the GPU may be used to consolidate repeated calculations and searching tasks during the motion estimation process. The use of frame collocation and depth buffer enables the GPU to be better utilized and to further accelerate video encoding.
摘要:
A video encoding system uses both a central processing unit (CPU) and a graphics processing unit (GPU) to perform video encoding. The system implements a technique that enables the GPU to perform motion estimation for video encoding. The technique allows the GPU to perform a motion estimation process in parallel with the video encoding process performed by the CPU. The performance of video encoding using such a system is greatly accelerated as compared to encoding using just the CPU. Also, data related to motion estimation is arranged and provided to the GPU in a way that utilizes the capabilities of the GPU. Data about video frames may be collocated to enable multiple channels of the GPU to process tasks in parallel. The depth buffer of the GPU may be used to consolidate repeated calculations and searching tasks during the motion estimation process.
摘要:
The systems and methods described herein are directed at accelerating video encoding using a graphics processing unit. In one aspect, a video encoding system uses both a central processing unit (CPU) and a graphics processing unit (GPU) to perform video encoding. The system implements a technique that enables the GPU to perform motion estimation for video encoding. The technique allows the GPU to perform a motion estimation process in parallel with the video encoding process performed by the CPU. The performance of video encoding using such a system is greatly accelerated as compared to encoding using just the CPU. In another aspect, data related to motion estimation is arranged and provided to the GPU in a way that utilizes the capabilities of the GPU. Data about video frames may be collocated to enable multiple channels of the GPU to process tasks in parallel. The depth buffer of the GPU may be used to consolidate repeated calculations and searching tasks during the motion estimation process. The use of frame collocation and depth buffer enables the GPU to be better utilized and to further accelerate video encoding.
摘要:
Sequences of a serotype 8 adeno-associated virus and vectors and host cells containing these sequences are provided. Also described are methods of using such host cells and vectors in production of rAAV particles.
摘要:
A recombinant vector comprises a simian adenovirus capsid and a heterologous gene under the control of regulatory sequences. A cell line which expresses simian adenovirus gene(s) is also disclosed. Methods of using the vectors and cell lines are provided.
摘要:
A recombinant vector comprises simian adenovirus sequences and a heterologous gene under the control of regulatory sequences. A cell line which expresses simian adenovirus gene(s) is also disclosed. Methods of using the vectors and cell lines are provided.
摘要:
Techniques and tools described herein mine social information from a source and store the social information in a database. Responsive to a search object, the techniques search the stored social information and determine social relationships. The techniques further provide, via a graphical user interface, the social relationships determined from the social information stored in the database. In several embodiments, the techniques enable social relationship feedback.