摘要:
An elastic wave cloaking lattice-based metamaterial for cloaking an object within a void includes a lattice of connected unit cells arranged to form a void, each unit cell comprising a mass and a plurality of connecting springs, the mass coupled by the plurality of connecting springs to masses in adjacent unit cells, the plurality of connecting springs comprising at least two large springs of a first length and at least two short springs of a second length, the first length greater than the second length, the springs and masses having relational and mechanical characteristics to facilitate elastic wave cloaking in the totality of the lattice. The lattice as a whole has metamaterial properties resulting from the positional relationship and mechanical properties of masses and connecting springs of the unit cells such that the lattice at least partially cloaks an object or material portioned within the void from elastic waves.
摘要:
The invention provides a laser microarray scanner for microarray scanning, comprising an optical system, a scanning platform, and a data processing system. During scanning, the optical system remains fixed, and the microarray placed on the scanning platform moves relative to the optical system. The microarray scanner disclosed herein has high scanning speed, high sensitivity, high resolution, and high signal-to-noise ratio, thus is ideal for use in microarray scanning
摘要:
An integrated microfluidic device and its usage are provided. The microfluidic device comprises an upper layer (1) and a lower layer (2), wherein the lower layer (2) is bound to the upper layer (1). The upper layer (1) comprises a micro-channel (3) and the lower layer (2) comprises a micro-well (7) array. The micro-channel (3) is in fluidic connection with the micro-well (7) array, and the height of the micro-channel (3) is greater than the diameter of the oocyte (4) flowing through the micro-channel (3). The integrated microfluidic device has many advantages including low cost, high integration, and convenient operation, and has application prospects in reproductive medicine and the research of fertilization and embryo early development.
摘要:
The invention provides a scanning platform for high speed scanning of microarrays. The platform uses a novel flexible a metal strip/wheel linear driving system to convert rotary movement of motors into linear movement, thereby drives movement of a stage/microarray in the direction of scanning. The platform of the present invention provides high movement speed, high resolution, and low return deviation. It is also simple in structure and low in manufacturing cost.
摘要:
A dynamic dada sampling system and method is disclosed for in vivo small animal fluorescence molecular imaging and dual-modality molecular imaging. The system comprises a computer, a rotation stage for animal suspension driven by a motor, and a fluorescence excitation-detection apparatus. The fluorescence excitation-detection apparatus comprises a fluorescence excitation module and a fluorescence detection module. The CCD device of the fluorescence detection module is connected to a computer through an interface controller. The motor is connected to a computer through RS232 interface. The process of dynamic data acquisition is as follows: a fluorescent probe is injected into a small animal in order to target specific cells or tissues; a small animal is vertically hung on a rotation stage after anesthesia; the fluorescence imaging detection module acquires the emitting light continuously. The present invention can provide 360 degree imaging quickly, efficiently, and non-invasively.
摘要:
An integrated microfluidic device and its usage are provided. The microfluidic device comprises an upper layer (1) and a lower layer (2), wherein the lower layer (2) is bound to the upper layer (1). The upper layer (1) comprises a micro-channel (3) and the lower layer (2) comprises a micro-well (7) array. The micro-channel (3) is in fluidic connection with the micro-well (7) array, and the height of the micro-channel (3) is greater than the diameter of the oocyte (4) flowing through the micro-channel (3). The integrated microfluidic device has many advantages including low cost, high integration, and convenient operation, and has application prospects in reproductive medicine and the research of fertilization and embryo early development.
摘要:
The invention provides a laser microarray scanner for microarray scanning, comprising an optical system, a scanning platform, and a data processing system. During scanning, the optical system remains fixed, and the microarray placed on the scanning platform moves relative to the optical system. The microarray scanner disclosed herein has high scanning speed, high sensitivity, high resolution, and high signal-to-noise ratio, thus is ideal for use in microarray scanning
摘要:
The invention provides a scanning platform for high speed scanning of microarrays. The platform uses a novel flexible a metal strip/wheel linear driving system to convert rotary movement of motors into linear movement, thereby drives movement of a stage/microarray in the direction of scanning. The platform of the present invention provides high movement speed, high resolution, and low return deviation. It is also simple in structure and low in manufacturing cost.
摘要:
Methods and devices use in two-color measurement systems. The methods and devices include methods of making corrections, methods of calculating correction factors, fluorescence scanners, and microarray chips. The said methods and devices enable a user to correct fluorescence intensities for errors caused by the occurrence of FRET and/or cross-talk when two fluorophores are used in two-color fluorescence arrays.
摘要:
Methods and devices use in two-color measurement systems. The methods and devices include methods of making corrections, methods of calculating correction factors, fluorescence scanners, and microarray chips. The said methods and devices enable a user to correct fluorescence intensities for errors caused by the occurrence of FRET and /or cross-talk when two fluorophores are used in two-color fluorescence arrays.