摘要:
Systems and methods are provided for detecting flow in a mass flow controller (MFC). The position of a gate in the MFC is sensed or otherwise determined to monitor flow through the MFC and to immediately or nearly immediately detect a flow failure. In one embodiment of the present invention, a novel MFC is provided. The MFC includes an orifice, a mass flow control gate, an actuator and a gate position sensor. The actuator moves the control gate to control flow through the orifice. The gate position sensor determines the gate position and/or gate movement to monitor flow and immediately or nearly immediately detect a flow failure. According to one embodiment of the present invention, the gate position sensor includes a transmitter for transmitting a signal and a receiver for receiving the signal such that the receiver provides an indication of the position of the gate based on the signal received. Other embodiments of the gate position sensor are described herein, as well as systems and methods that incorporate the novel MFC within a semiconductor manufacturing process.
摘要:
Systems and methods are provided for detecting flow in a mass flow controller (MFC). The position of a gate in the MFC is sensed or otherwise determined to monitor flow through the MFC and to immediately or nearly immediately detect a flow failure. In one embodiment of the present invention, a novel MFC is provided. The MFC includes an orifice, a mass flow control gate, an actuator and a gate position sensor. The actuator moves the control gate to control flow through the orifice. The gate position sensor determines the gate position and/or gate movement to monitor flow and immediately or nearly immediately detect a flow failure. According to one embodiment of the present invention, the gate position sensor includes a transmitter for transmitting a signal and a receiver for receiving the signal such that the receiver provides an indication of the position of the gate based on the signal received. Other embodiments of the gate position sensor are described herein, as well as systems and methods that incorporate the novel MFC within a semiconductor manufacturing process.
摘要:
Systems and methods are provided for detecting flow in a mass flow controller (MFC). The position of a gate in the MFC is sensed or otherwise determined to monitor flow through the MFC and to immediately or nearly immediately detect a flow failure. In one embodiment of the present invention, a novel MFC is provided. The MFC includes an orifice, a mass flow control gate, an actuator and a gate position sensor. The actuator moves the control gate to control flow through the orifice. The gate position sensor determines the gate position and/or gate movement to monitor flow and immediately or nearly immediately detect a flow failure. According to one embodiment of the present invention, the gate position sensor includes a transmitter for transmitting a signal and a receiver for receiving the signal such that the receiver provides an indication of the position of the gate based on the signal received. Other embodiments of the gate position sensor are described herein, as well as systems and methods that incorporate the novel MFC within a semiconductor manufacturing process.
摘要:
Methods are provided for forming a contact in an integrated circuit by chemical vapor deposition (CVD). The methods include forming titanium in the contact. One method includes forming titanium by combining a titanium precursor in the presence of hydrogen, H2. Another method includes forming titanium by combining titanium tetrachloride, TiCl4, in the presence of hydrogen. A further method includes forming titanium by combining tetradimethyl amino titanium, Ti(N(CH3)2)4, in the presence of hydrogen.
摘要:
Apparatus having titanium silicide and titanium formed by chemical vapor deposition (CVD) in a contact. The chemical vapor deposition includes forming titanium silicide and/or titanium by combining a titanium precursor in the presence of hydrogen, H2. The chemical vapor deposition may further include forming titanium silicide and/or titanium by combining titanium tetrachloride, TiCl4, in the presence of hydrogen. The chemical vapor deposition may further include forming titanium silicide and/or by combining tetradimethyl amino titanium, Ti(N(CH3)2)4, in the presence of hydrogen. For production of titanium silicide, reaction of the titanium precursor may occur with a silicon precursor or a silicon source occurring as part of the contact. Use of a silicon precursor reduces depletion of a silicon base layer in the contact.
摘要:
Methods arc provided for forming a contact in an integrated circuit by chemical vapor deposition (CVD). The methods include forming titanium silicide in the contact. One method includes forming titanium silicide by combining a titanium precursor in the presence of hydrogen, H2. Another method includes forming titanium silicide by combining titanium tetrachloride, TiCl4, in the presence of hydrogen. A further method includes forming titanium silicide by combining tetradimethyl amino titanium, Ti(N(CH3)2)4, in the presence of hydrogen. The methods may further include forming titanium in the contact.
摘要:
A method is provided for forming a contact in an integrated circuit by chemical vapor deposition (CVD). In one embodiment, a titanium precursor and a silicon precursor are contacted in the presence of hydrogen, to form titanium silicide. In another embodiment, a titanium precursor contacts silicon to form to form titanium silicide.
摘要:
A method is provided for forming a contact in an integrated circuit by chemical vapor deposition (CVD). In one embodiment, a titanium precursor and a silicon precursor are contacted in the presence of hydrogen, to form titanium silicide. In another embodiment, a titanium precursor contacts silicon to form to form titanium silicide.
摘要:
A method is provided for forming a contact in an integrated circuit by chemical vapor deposition (CVD). In one embodiment, a titanium precursor and a silicon precursor are contacted in the presence of hydrogen, to form titanium silicide. In another embodiment, a titanium precursor contacts silicon to form to form titanium silicide.
摘要:
Methods of chemical vapor deposition include providing a deposition chamber defined at least in part by at least one of a chamber sidewall and a chamber base wall. At least one process chemical inlet to the deposition chamber is included. A substrate is positioned within the chamber and a process gas is provided over the substrate effective to deposit material onto the substrate. While providing the process gas, a purge gas is emitted into the chamber from a plurality of purge gas inlets comprised by at least one chamber wall surface. The purge gas inlets are separate from the at least one process chemical inlet and the emitting forms an inert gas curtain over the chamber wall surface.