摘要:
The subject invention concerns novel materials and methods for the control of cockroaches. Cockroaches are common house pests, and they create problems in hospitals, the food industry and in agriculture. According to the subject invention, activated toxins of Bacillus thuringiensis var. israelensis (B.t.i.) are used to control cockroaches. In one embodiment, the subject invention also concerns the use of B.t. PS123D1 to control cockroaches. A truncated form of a toxin obtained from PS123D1 having particular activity to cockroaches is also claimed for use in controlling the pest.
摘要:
The subject invention concerns a novel microbe and genes encoding novel toxin proteins with activity against cockroaches. Cockroaches are common house pests, and they create problems in hospitals, the food industry and in agriculture. The novel Bacillus thuringiensis microbe of the invention is referred to as B.t. PS185L8. The subject invention also concerns the use of B.t. PS201T6 to control cockroaches. A truncated form of a toxin obtained from PS201T6 having particular activity to cockroaches is also claimed for use in controlling the pest. The spores or crystals of the two microbes, or mutants thereof, are useful to control cockroaches in various environments. The genes of the invention can be used to transform various hosts wherein the novel toxic proteins can be expressed.
摘要:
The subject invention concerns Bacillus thuringiensis isolates designated B.t. PS157C1, B.t. PS86A1, and B.t. PS75J1, which are active against aphid pests. Thus, these isolates, or variants thereof, can be used to control such pests. Further, genes encoding novel .delta.-endotoxins can be removed from these isolates and transferred to other host microbes, or plants. Expression of the .delta.-endotoxins in microbe hosts results in the control of aphid pests, whereas transformed plants become resistant to aphid pests.
摘要:
This invention provides modified, insecticidal Cry34 proteins with enhanced properties as compared to wild-type Cry34 proteins. The modifications to these proteins were based in part on an analysis of the three-dimensional (3D) structure of this protein and other proteins in the Cry34 class. The subject invention also includes polynucleotides that encode these modified proteins, and transgenic plants that produce these modified proteins. This invention further provides methods of controlling plant pests, including rootworms, with these modified proteins. The modified proteins of the subject invention include chimeric toxins involving exchanged segments, domains, and motifs as discussed herein. The subject invention also provides methods of modifying Cry34 proteins.
摘要:
The subject invention concerns new classes of pesticidally active proteins and the polynucleotide sequences which encode these proteins. More specifically, in preferred embodiments, pesticidal proteins of approximately 40-50 kDa and of approximately 10-15 kDa are used for controlling corn rootworms. Also described are novel pesticidal isolates of Bacillus thuringiensis.
摘要:
The subject invention concerns new classes of pesticidally active proteins and the polynucleotide sequences which encode these proteins. More specifically, in preferred embodiments, pesticidal proteins of approximately 40-50 kDa and of approximately 10-15 kDa are used for controlling corn rootworms. Also described are novel pesticidal isolates of Bacillus thuringiensis.
摘要:
The subject invention concerns materials and methods useful in the control of non-mammalian pests and, particularly, plant pests. In a specific embodiment, the subject invention provides new Bacillus thuringiensis toxins useful for the control of lepidopterans. The subject invention further provides nucleotide sequences which encode the toxins of the subject invention. The nucleotide sequences of the subject invention can be used to transform hosts, such as plants, to express the pesticidal toxins of the subject invention. The subject invention further concerns novel nucleotide primers for the identification of genes encoding toxins active against pests. The primers are useful in PCR techniques to produce gene fragments which are characteristic of genes encoding these toxins. The primers are also useful as nucleotide probes to detect the toxin-encoding genes.