摘要:
The subject invention concerns Bacillus thuringiensis isolates designated B.t. PS157C1, B.t. PS86A1, and B.t. PS75J1, which are active against aphid pests. Thus, these isolates, or variants thereof, can be used to control such pests. Further, genes encoding novel .delta.-endotoxins can be removed from these isolates and transferred to other host microbes, or plants. Expression of the .delta.-endotoxins in microbe hosts results in the control of aphid pests, whereas transformed plants become resistant to aphid pests.
摘要:
The subject invention concerns novel materials and methods for the control of cockroaches. Cockroaches are common house pests, and they create problems in hospitals, the food industry and in agriculture. According to the subject invention, activated toxins of Bacillus thuringiensis var. israelensis (B.t.i.) are used to control cockroaches. In one embodiment, the subject invention also concerns the use of B.t. PS123D1 to control cockroaches. A truncated form of a toxin obtained from PS123D1 having particular activity to cockroaches is also claimed for use in controlling the pest.
摘要:
The subject invention concerns a novel microbe and genes encoding novel toxin proteins with activity against cockroaches. Cockroaches are common house pests, and they create problems in hospitals, the food industry and in agriculture. The novel Bacillus thuringiensis microbe of the invention is referred to as B.t. PS185L8. The subject invention also concerns the use of B.t. PS201T6 to control cockroaches. A truncated form of a toxin obtained from PS201T6 having particular activity to cockroaches is also claimed for use in controlling the pest. The spores or crystals of the two microbes, or mutants thereof, are useful to control cockroaches in various environments. The genes of the invention can be used to transform various hosts wherein the novel toxic proteins can be expressed.
摘要:
Disclosed and claimed are Bacillus thuringiensis isolates designated B.t. PS45B1, B.t. PS24J, B.t. PS94R3 B.t. PS17, B.t. PS62B1 and B.t. PS74G1 which are active against acarid pests. Thus, these isolates, or mutants thereof, can be used to control such pests. Further, genes encoding novel .delta.-endotoxins can be removed from these isolates and transferred to other host microbes, or plants. Expression of the .delta.-endotoxins in microbe hosts results in the control of acarid pests, whereas transformed plants become resistant to acarid pests.
摘要:
Disclosed and claimed are Bacillus thuringiensis isolates designated B.t. PS50C, B.t. PS86A1, B.t. PS69D1, B.t. PS72L1, B.t. PS75J1, B.t. PS83E5, B.t. PS45B1, B.t.. PS24J, B.t. PS94R3, B.t. PS17, B.t. PS62B1 and B.t. PS74G1 which are active against acaride pests. Thus, these isolates, or mutants thereof, can be used to control such pests. Further, genes encoding novel .delta.-endotoxins can be removed from these isolates and transferred to other host microbes, or plants. Expression of the .delta.-endotoxins in microbe hosts results in the control of acaride pests, whereas transformed plants become resistant to acaride pests.
摘要:
The subject invention concerns Bacillus thuringiensis isolates designated B.t. PS157C1, B.t. PS86A1, and B.t. PS75J1, which are active against aphid pests. Thus, these isolates, or variants thereof, can be used to control such pests. Further, genes encoding novel .delta.-endotoxins can be removed from these isolates and transferred to other host microbes, or plants. Expression of the .delta.-endotoxins in microbe hosts results in the control of aphid pests, whereas transformed plants become resistant to aphid pests.
摘要:
A novel B.t. toxin gene toxic to lepidopteran insects has been cloned from a novel lepidopteran-active B. thuringiensis microbe. The DNA encoding the B.t. toxin can be used to transform various prokaryotic and eukaryotic microbes to express the B.t. toxin. These recombinant microbes can be used to control lepidopteran insects in various environments.