Abstract:
The present invention concerns a friction piece (10) suitable for operating in a lubricated medium at a temperature higher than 200° C. The piece (10) comprises a metal surface (12) and an external coating (14) composed of tungsten carbide doped with nitrogen WC(N) with an atomic ratio of nitrogen between 5 and 12%. The invention also relates to a mechanical system (1) comprising such a piece (10). The invention also relates to a method for implementing such a piece (10).
Abstract:
Various implementations include a combustion engine piston, including a skirt in a counter-part and including a first contact area of the piston in the counter-part, a head which extends transverse to a central axis, and a ring carrier which comprises at least two lands and at least two grooves for receiving the rings, including a first land adjoining the head and a second land situated between the first land and the skirt, wherein the lands include at least one contact land having a diameter greater than a minimum diameter of the skirt to form a second contact area of the piston in the counter-part, and wherein at least one contact land comprises a friction-reducing surface coating, formed at least on a radial sector covering an angle of at least 30 degrees, and up to on a single sector covering an angle of 360 degrees.
Abstract:
Some embodiments are directed to a multimaterial powder used in the field of metallurgy and plasturgy. The multimaterial powder includes support particles having a median particle size distribution between 1 μm and 100 μm and functionalising particles having a median particle size distribution that is a factor of 10 to 1000 lower relative to the support particles. The powder is characterised in that the support particles and the functionalising particles form composite grains having a core-shell structure that each have a core formed by a support particle, and a shell, that covers between 10 and 100% of the surface of the support particle and which is formed by at least one surface layer of the functionalising particles.
Abstract:
A mechanical part provided with an amorphous carbon coating (with at least 70 wt. % of carbon not including hydrogen) and used to cooperate slidingly with an antagonistic part having a surface hardness which is a maximum of two thirds of that of the coating. The mechanical part is such that the coating has a roughness Ra which, measured by profilometry, is equal to a maximum of 0.050 microns and, measured by atomic force microscopy, a micro-roughness which is equal to a minimum of 0.004 microns and a maximum of 0.009 microns. This minimizes the wear of the less hard antagonistic part and that of the coating.
Abstract:
An inside surface of an internal combustion engine liner is treated to have a surface roughness Ra smaller than 0.06 μm, and then receives a DLC coating. A method of producing the internal combustion engine liner includes: forming the liner from a metal material, polishing an inside surface of the liner to obtain a polished inside surface of roughness Ra smaller than 0.06 μm, and applying the DLC coating to the polished inside surface.
Abstract:
The device includes at least two coaxial waveguides each formed of a central conductor and of an external conductor to bring microwaves into a treatment chamber. The at least two electromagnetic wave injection guides are combined with a magnetic circuit elongated in one direction. The magnetic circuit surrounding the waveguides by creating a magnetic field capable of achieving an ECR condition close to the waveguides.
Abstract:
The device includes at least two coaxial waveguides each formed of a central conductor and of an external conductor to bring microwaves into a treatment chamber. The at least two electromagnetic wave injection guides are combined with a magnetic circuit elongated in one direction. The magnetic circuit surrounding the waveguides by creating a magnetic field capable of achieving an ECR condition close to the waveguides.
Abstract:
A cam treatment to reduce the friction coefficient thereof relative to a counterpart in an area provided with a hard coating made from amorphous Diamond-Like Carbon or DLC, involves disposing the cams on a support, bringing the support and the cams into a chamber placed under vacuum so as to clean the cams, bringing the support into relative movement along a trajectory of travel relative to a coating source, and taking the cams off the support before assembling them on a camshaft; the method involves disposing the cams on the support in a fixed configuration which is defined in such a way that the cams are brought successively opposite the source with orientations and at distances substantially identical relative to the source, to deposit a hard coating made from amorphous Diamond-Like Carbon or DLC, selectively on the fraction of the section of the cams that is oriented towards the source.
Abstract:
The piston pin has an anti-seize coating limited to an angular sector corresponding at least to a friction area submitted to a contact pressure along a preferential direction.
Abstract:
The lubricated environment incorporates a friction modifier, and a coating is applied to the part. The coating is chromium nitride and the friction modifier is MoDTC. The chromium nitride presents an NaCl-type crystallization and a microhardness of 1,800+/−200 HV.