Abstract:
A fuel pump includes an intake valve unit which is provided between a low-pressure chamber and a pressurizing chamber. The intake valve unit includes an intake valve configured to move in an axial direction of the intake valve unit and a valve stopper arranged between the intake valve and the pressurizing chamber. A plurality of fuel passages configured to allow fuel to communicate between the low-pressure chamber and the pressurizing chamber are formed on a radially outward of an outer peripheral surface of the valve stopper.
Abstract:
A high-pressure fuel supply pump includes a pressurizing chamber, a piston plunger, and an electromagnetically-driven intake valve mechanism. The piston plunger reciprocates within the pressurizing chamber. The electromagnetically-driven intake valve mechanism is provided at an inlet of the pressurizing chamber. The electromagnetically-driven intake valve mechanism includes an anchor which pulls a plunger rod, a fixed core which attracts the anchor, and a yoke in which inner peripheral part has the fixed core and the anchor. The fixed core is fixed to a bottom part of the yoke. A through hole is formed at a bottom part of the fixed core.
Abstract:
An object of the present invention is to obtain a high pressure fuel supply pump capable of reducing pressure pulsation that occurs in a low pressure pipe, preventing damage to the low pressure pipe, or reducing noise due to vibrations of the low pressure pipe. The present invention provides a high pressure fuel supply pump of a type in which, from a fuel suction port connected to a low pressure pipe provided upstream of a fuel, a low pressure passage, an electromagnetic suction valve driven by an electromagnetic force, a pressurizing chamber in which the volume thereof is increased or reduced by a plunger that is reciprocatingly moved by being guided by a cylinder, and a discharge valve provided at an outlet of the pressurizing chamber are sequentially arranged, a fuel is sucked to the pressurizing chamber through the electromagnetic suction valve, the amount of a part of the fuel, which is sucked to the pressurizing chamber, to be returned to the low pressure passage side is adjusted so that the amount of the fuel to be discharged through the discharge valve is controlled, and the high pressure fuel supply pump includes a backflow suppression mechanism for suppressing backflow of fuel from the fuel from the fuel suction portion to the low pressure pipe side.
Abstract:
A high-pressure fuel supply pump in which a relief valve mechanism is not detached by a force generated by a differential pressure between an inlet side and an output side of a relief valve mechanism is obtained. According to the present invention, in order to obtain the high-pressure fuel supply pump, the relief valve mechanism of the high-pressure fuel supply pump is oriented from a downstream side of a discharge valve to an upstream side of the discharge valve, and the output side of the relief valve mechanism is inserted from the upstream side of the discharge valve into the pump housing, and the relief valve mechanism is fixed with press fitting. Therefore, a force exerted by the differential pressure between the inlet side pressure and the output side pressure of the relief valve mechanism is exerted in a direction in which the relief valve mechanism is inserted, so that the relief valve mechanism can be prevented from being detached.
Abstract:
Provided are an inverter device deterring PWM voltage error even if high inverter output frequencies are used for overmodulation driving and an electric vehicle equipped with the inverter device. In an angular section where the output voltage from an inverter device is linearly approximated with the zero cross point as the center thereof, a PWM generator in the inverter device changes either the time interval between the centers of PWM ON pulses or the time interval between the centers of PWM OFF pulses depending on the inverter operation state. An electric vehicle is equipped with the inverter device, which drives a motor.
Abstract:
A high pressure fuel supply pump includes: an electromagnetic suction valve that adjusts an amount of fuel sucked into a pressuring chamber; a discharge valve that discharges the fuel from the pressuring chamber; and a plunger that makes a reciprocating motion in the pressuring chamber. The electromagnetic suction valve includes an electromagnetic coil, a suction valve, and a movable portion that is able to close the suction valve by a magnetic force when the electromagnetic coil is energized. The movable portion includes an anchor that is driven to close the suction valve by the magnetic force and stops at a fixed member, and a rod that is driven with the anchor and is able to move even after the anchor stops. The electromagnetic suction valve includes a first and second springs that bias the suction valve in closed and open direction, respectively, and a third spring in the rod.
Abstract:
To reduce collision noise created by the operation of an electromagnetic suction valve provided on a high pressure fuel supply pump, the mass of a member which collides by magnetic attractive force is reduced. The noise generated when a core and an anchor collide with each other by magnetic attractive force depends on the magnitude of the kinetic energy of a moving element. The kinetic energy to be consumed in the collision is only the kinetic energy of the anchor. The kinetic energy of a rod, being absorbed by a spring, does not contribute to the noise; thus, the energy when the anchor and the core collide with each other can be reduced, whereby the noise to be created can be reduced.
Abstract:
To reduce collision noise created by the operation of an electromagnetic suction valve provided on a high pressure fuel supply pump. In the present invention, in order to achieve the above object, the mass of a member which collides by magnetic attractive force is reduced to reduce the noise to be generated. The thus configured present invention provides the following advantageous effects. The noise generated when a core and an anchor collide with each other by magnetic attractive force depends on the magnitude of the kinetic energy of a moving element. The kinetic energy to be consumed in the collision is only the kinetic energy of the anchor. The kinetic energy of a rod, being absorbed by a spring, does not contribute to the noise; thus, the energy when the anchor and the core collide with each other can be reduced, whereby the noise to be created can be reduced.
Abstract:
Provided is a motor control device that detects a position error between a detection position, calculated from a rotation position sensor signal of a motor, and a position of a motor induced voltage and performs phase correction. A motor control device 400 includes an inverter unit (motor drive unit) 100 and a motor unit 300. The inverter unit 100 includes a current control unit 120 that detects a drive current of a motor 310 and outputs a voltage command, a three-phase voltage conversion unit 130 that outputs a drive signal based on the voltage command that has been output, an inverter circuit 140 that supplies the motor with the drive signal, and a phase correction unit 170 that corrects a phase detected by a rotation position sensor 320. The phase correction unit includes a phase switching unit that switches between a phase for normal control and a phase for phase adjustment, and a phase error calculation unit that calculates a phase error equivalent to a mounting position error of the rotation position sensor. The mounting position error is corrected by adding/subtracting the phase error to/from the phase for normal control during phase correction operation.
Abstract:
A high-pressure fuel supply pump having a normally-closed type electromagnetically-driven inlet valve mechanism supporting a large capacity and causing least sound is provided. A valve member having a seat surface that comes into abutment with an inlet valve seat; and a plunger rod positioned on the seat surface side of the valve member and configured to operate the valve member by a magnetic attraction force are provided, and a protector configured to face a surface of the valve member on the surface opposite to the seat surface with a gap therebetween when the plunger rod makes a full stroke in the valve-open direction of the valve member and an anchor for driving the plunger rod comes into contact with a stopper is provided.