Abstract:
Prior art documents do not describe a method for modifying the surface of a calcium aluminate compound, much less describe a method for controlling the particle diameter of a calcium aluminate compound. The present invention provides a novel method for producing a calcium aluminate compound having a modified surface. The present invention provides: a method for producing a modified calcium aluminate compound characterized by irradiating a calcium aluminate compound dispersed in an organic dispersion medium with a femtosecond laser, thereby modifying the surface of the calcium aluminate compound; and a modified calcium aluminate compound characterized by being obtained by this method and having at least one of an OH group, a CO group, a CH group, and an NH group.
Abstract:
To provide a catalyst for purifying a combustion exhaust gas and a method for purifying a combustion exhaust gas. The denitration catalyst used in a method for purifying a combustion exhaust gas of removing a nitrogen oxide in the exhaust gas by making the catalyst into contact with the combustion exhaust gas having an alcohol as a reducing agent added thereto, contains zeolite as a support having supported thereon a catalyst metal, in a powder X-ray diffraction (XRD) measurement of the denitration catalyst a ratio (relative peak intensity ratio) r=I/J of a height I of a diffraction peak at a diffraction angle (2θ) of from 7.8 to 10.0° and a height J of a diffraction peak at a diffraction angle (2θ) of from 28.0 to 31.0° being in a range of from 3.0 to 5.0.
Abstract translation:提供一种用于净化燃烧废气的催化剂和一种净化燃烧废气的方法。 通过使催化剂与添加了作为还原剂的醇的燃烧废气接触来净化废气中的氮氧化物的燃烧废气的净化方法中使用的脱硝催化剂含有沸石作为载体的载体 在催化剂金属的粉末X射线衍射(XRD)测量中,脱硝催化剂的衍射角(2θ)处的衍射峰的高度I的比(相对峰强度比)r = I / J 7.8〜10.0°,衍射角(2θ)为28.0〜31.0°的衍射峰的高度J为3.0〜5.0。
Abstract:
The present invention addresses the problem and purpose of providing a honeycomb structure that has a sufficiently high strength and is excellent in endurance, and a catalyst for cleaning an exhaust gas using the same that is excellent in resistance to sulfur oxide (SOX). The honeycomb structure of the present invention is one consists of a flat inorganic fiber sheet comprising an inorganic fiber sheet having supported thereon an inorganic binder and zeolite, and a corrugated inorganic fiber sheet comprising an inorganic fiber sheet having supported thereon the same inorganic binder and zeolite, which are alternately combined with each other, wherein it is characterized in that the zeolite has a particle diameter (i.e., a median particle diameter, D50) of from 0.5 to 10.0 μm.
Abstract:
The present invention provides a catalyst for purifying a combustion exhaust gas and a method for purifying a combustion exhaust gas, capable of efficiently removing a nitrogen oxide in an exhaust gas in a relatively low temperature range discharged from an internal combustion engine, such as a marine diesel engine, with a smaller amount of the reducing agent than the ordinary techniques. The catalyst for purifying a combustion exhaust gas is a catalyst used in a purification method of a combustion exhaust gas of removing a nitrogen oxide in a combustion exhaust gas by making the catalyst into contact with the combustion exhaust gas having an alcohol added thereto as a reducing agent, the catalyst containing a catalyst support containing zeolite, having supported thereon at least one metal selected from the group consisting of Ag (silver), Bi (bismuth), and Pb (lead).
Abstract:
The present invention provides a novel method for producing a calcium aluminate compound having a modified surface. The present invention provides: a method for producing a modified calcium aluminate compound characterized by irradiating a calcium aluminate compound dispersed in an organic dispersion medium with a femtosecond laser, thereby modifying the surface of the calcium aluminate compound; and a modified calcium aluminate compound characterized by being obtained by this method and having at least one of an OH group, a CO group, a CH group, and an NH group.
Abstract:
To provide a catalyst for purifying a combustion exhaust gas and a method for purifying a combustion exhaust gas. The denitration catalyst used in a method for purifying a combustion exhaust gas of removing a nitrogen oxide in the exhaust gas by making the catalyst into contact with the combustion exhaust gas having an alcohol as a reducing agent added thereto, contains zeolite as a support having supported thereon a catalyst metal, in a powder X-ray diffraction (XRD) measurement of the denitration catalyst a ratio (relative peak intensity ratio) r=I/J of a height I of a diffraction peak at a diffraction angle (2θ) of from 7.8 to 10.0° and a height J of a diffraction peak at a diffraction angle (2θ) of from 28.0 to 31.0° being in a range of from 3.0 to 5.0.
Abstract:
An object of the present invention is to provide a method for producing conductive mayenite, with which a reaction is completed in a short time, an operation can be simplified, the reaction is easily controlled, and the cost of energy can be reduced. The present invention is a method for producing conductive mayenite, characterized by mixing a mayenite type compound with a carbon component, placing the resulting mixture in an airtight container, and irradiating the mixture with a microwave in an inert gas atmosphere or in a vacuum atmosphere to heat the mixture.
Abstract:
The present invention addresses the problem and purpose of providing a honeycomb structure that has a sufficiently high strength and is excellent in endurance, and a catalyst for cleaning an exhaust gas using the same that is excellent in resistance to sulfur oxide (SOX). The honeycomb structure of the present invention is one consists of a flat inorganic fiber sheet comprising an inorganic fiber sheet having supported thereon an inorganic binder and zeolite, and a corrugated inorganic fiber sheet comprising an inorganic fiber sheet having supported thereon the same inorganic binder and zeolite, which are alternately combined with each other, wherein it is characterized in that the zeolite has a particle diameter (i.e., a median particle diameter, D50) of from 0.5 to 10.0 μm.
Abstract:
An exhaust gas treatment apparatus includes a treatment cabinet and a catalyst part. To the treatment cabinet, introduced is exhaust gas of an engine which uses gas containing methane as a fuel. The catalyst part is accommodated in the treatment cabinet and oxidizes unburned methane contained in the exhaust gas. When a temperature of the catalyst part is lower than a predetermined normal operating temperature, the catalyst part oxidizes carbon monoxide contained in the exhaust gas and uses oxidation reaction heat of carbon monoxide, to thereby raise the temperature of the catalyst part up to the normal operating temperature or higher. Even when the temperature of the exhaust gas supplied to the catalyst part is lower than the normal operating temperature, it is thereby possible to quickly raise the temperature of the catalyst part up to the normal operating temperature por higher.
Abstract:
One object is to provide a useful aldehyde decomposition catalyst, and an exhaust gas treatment apparatus and an exhaust gas treatment method using the aldehyde decomposition catalyst that achieve low cost and sufficient aldehyde decomposition performance with a small amount of the catalyst. An aldehyde decomposition catalyst of the present invention is made of a zeolite in a cation form NH4 having a structure of CHA or MOR and carrying Cu.