摘要:
Provided is a method for manufacturing a MOSFET, including: forming a shallow trench isolation (STI) in a semiconductor substrate to define an active region for the MOSFET; performing etching with the STI as a mask, to expose a surface of the semiconductor substrate, and to protrude a portion of the STI with respect to the surface of the semiconductor substrate, resulting in a protruding portion; forming a first spacer on sidewalls of the protruding portion; forming a gate stack on the semiconductor substrate; forming a second spacer surrounding the gate stack; forming openings in the semiconductor substrate with the STI, the gate stack, the first spacer and the second spacer as a mask; epitaxially growing a semiconductor layer with a bottom surface and sidewalls of each of the openings as a growth seed layer; and performing ion implantation into the semiconductor layer to form source and drain regions.
摘要:
Provided is a method for manufacturing a MOSFET, including: forming a shallow trench isolation (STI) in a semiconductor substrate to define an active region for the MOSFET; performing etching with the STI as a mask, to expose a surface of the semiconductor substrate, and to protrude a portion of the STI with respect to the surface of the semiconductor substrate, resulting in a protruding portion; forming a first spacer on sidewalls of the protruding portion; forming a gate stack on the semiconductor substrate; forming a second spacer surrounding the gate stack; forming openings in the semiconductor substrate with the STI, the gate stack, the first spacer and the second spacer as a mask; epitaxially growing a semiconductor layer with a bottom surface and sidewalls of each of the openings as a growth seed layer; and performing ion implantation into the semiconductor layer to form source and drain regions.
摘要:
The present invention discloses a semiconductor device, comprising a plurality of fins located on a substrate and extending along a first direction; a plurality of gate stack structures extending along a second direction and across each of the fins; a plurality of stress layers located in the fins on both sides of the gate stack structures and having a plurality of source and drain regions therein; a plurality of channel regions located in the fins below the gate stack structures; characterized in that the stress layers have connected parts in the fins and that the channel regions enclose the connected parts.
摘要:
The present invention discloses a semiconductor device, which comprises a substrate, a gate stack structure on the substrate, a channel region in the substrate under the gate stack structure, and source and drain regions at both sides of the channel region, wherein there is a stressed layer under and at both sides of the channel region, in which the source and drain regions are formed. According to the semiconductor device and the method for manufacturing the same of the present invention, a stressed layer is formed at both sides of and under the channel region made of a silicon-based material so as to act on the channel region, thereby effectively increasing the carrier mobility of the channel region and improving the device performance.
摘要:
The present invention discloses a semiconductor device, comprising a plurality of fins located on a substrate and extending along a first direction; a plurality of gate stack structures extending along a second direction and across each of the fins; a plurality of stress layers located in the fins on both sides of the gate stack structures and having a plurality of source and drain regions therein; a plurality of channel regions located between the plurality of source and drain regions along a first direction; characterized in that the plurality of gate stack structures enclose the plurality of channel regions. In accordance with the semiconductor device and the method of manufacturing the same of the present invention, an all-around nanowire metal multi-gate is formed in self-alignment by punching through and etching the fins at which the channel regions are located using a combination of the hard mask and the dummy gate, thus the device performance is enhanced.
摘要:
This invention relates to a MOS device for making the source/drain region closer to the channel region and a method of manufacturing the same, comprising: providing an initial structure, which includes a substrate, an active region, and a gate stack; performing ion implantation in the active region on both sides of the gate stack, such that part of the substrate material undergoes pre-amorphization to form an amorphous material layer; forming a first spacer; with the first spacer as a mask, performing dry etching, thereby forming a recess, with the amorphous material layer below the first spacer kept; performing wet etching using an etchant solution that is isotropic to the amorphous material layer and whose etch rate to the amorphous material layer is greater than or substantially equal to the etch rate to the {100} and {110} surfaces of the substrate material but is far greater than the etch rate to the {111} surface of the substrate material, thus removing the amorphous material layer below the first spacer, such that the substrate material below the amorphous material layer is exposed to the solution and is etched thereby, and in the end, forming a Sigma shaped recess that extends to the nearby region below the gate stack; and epitaxially forming SiGe in the Sigma shaped recess.
摘要:
The present invention provides a manufacturing method for a semiconductor device having epitaxial source/drain regions, in which a diffusion barrier layer of the source/drain regions made of epitaxial silicon-carbon or germanium silicon-carbon are added on the basis of epitaxially growing germanium-silicon of the source/drain regions in the prior art process, and the introduction of the diffusion barrier layer of the source/drain regions prevents diffusion of the dopant in the source/drain regions, thus mitigating the SCE and DIBL effect. The use of the diffusion barrier layer for the source/drain regions can also reduce the dosage of HALO implantation in the subsequent step, thus if HALO is performed before epitaxial growth of the source/drain regions, impact on the surfaces of the source/drain regions can be alleviated; if HALO is performed after epitaxial growth of the source/drain regions, the stress release effect of the epitaxial layer of the source drain/regions caused by the implantation can be reduced as much as possible.
摘要:
The present invention relates to a method of manufacturing a semiconductor device for improving the spacer mask. In the present invention, a barrier layer and a sacrificial layer are formed, and the portions of the upper part of the spacer whose left and right sides differ greatly are ground away to leave the portion similar to a rectangle at the bottom of the spacer, which is used as the mask to perform the subsequent spacer masking technology. Thus the undesirable influences to the subsequent etching caused by the asymmetric profile of the spacer can be reduced as much as possible.
摘要:
The present invention discloses a semiconductor device, which comprises a substrate, a gate stack structure on the substrate, a channel region in the substrate under the gate stack structure, and source and drain regions at both sides of the channel region, wherein there is a stressed layer under and at both sides of the channel region, in which the source and drain regions are formed. According to the semiconductor device and the method for manufacturing the same of the present invention, a stressed layer is formed at both sides of and under the channel region made of a silicon-based material so as to act on the channel region, thereby effectively increasing the carrier mobility of the channel region and improving the device performance.
摘要:
A method of manufacturing a semiconductor device is disclosed. In one embodiment, the method comprises: forming a gate stack on a substrate; etching the substrate on both sides of the gate stack to form C-shaped source/drain grooves; and wet-etching the C-shaped source/drain grooves to form Σ-shaped source/drain grooves. With this method, it is possible to effectively increase stress applied to a channel region, to accurately control a depth of the source/drain grooves, and to reduce roughness of side walls and bottom portions of the grooves and thus reduce defects by etching the C-shaped source/drain grooves and then further wet-etching them to form the Σ-shaped source/drain grooves.