Abstract:
An active audio matrix decoding method and apparatus to generate multi-channel audio signals from a stereo channel audio signal. The method includes extracting characteristics of a plurality of speaker signals and angles of each of a plurality of multi-channel speakers from arbitrary signals reproduced by the multi-channel speakers, decoding a stereo signal into a plurality of multi-channel signals and correcting the decoded multi-channel signals based on the extracted characteristics of each of the plurality of speaker signals, extracting a power vector of each of the decoded multi-channel signals by multiplying a magnitude of each of the decoded multi-channel signals by an angle of each multi-channel speaker and extracting a vector of a virtual sound source existing between a plurality of channels based on the power vector of each of the decoded multi-channel signals, extracting a vector value of a dominant sound image by linearly combining the extracted vectors of the virtual sound sources and normalizing a position of each multi-channel speaker with respect to the vector value of the dominant sound image to obtain a normalized position value, and distributing a gain value to the position of each multi-channel speaker by comparing a magnitude of a combined decoded multi-channel signal with the magnitude of each of the decoded multi-channel signals.
Abstract:
An active audio matrix decoding method and apparatus to generate multi-channel audio signals from a stereo channel audio signal. The method includes extracting characteristics of a plurality of speaker signals and angles of each of a plurality of multi-channel speakers from arbitrary signals reproduced by the multi-channel speakers, decoding a stereo signal into a plurality of multi-channel signals and correcting the decoded multi-channel signals based on the extracted characteristics of each of the plurality of speaker signals, extracting a power vector of each of the decoded multi-channel signals by multiplying a magnitude of each of the decoded multi-channel signals by an angle of each multi-channel speaker and extracting a vector of a virtual sound source existing between a plurality of channels based on the power vector of each of the decoded multi-channel signals, extracting a vector value of a dominant sound image by linearly combining the extracted vectors of the virtual sound sources and normalizing a position of each multi-channel speaker with respect to the vector value of the dominant sound image to obtain a normalized position value, and distributing a gain value to the position of each multi-channel speaker by comparing a magnitude of a combined decoded multi-channel signal with the magnitude of each of the decoded multi-channel signals.
Abstract:
A method and apparatus to enhance a low frequency component of an audio signal, by computing a fundamental frequency of an input audio signal using the input audio signal and a delayed audio signal obtained by delaying the input audio signal by a predetermined amount of time, generating harmonic signals from the input audio signal based on the fundamental frequency, and combining the harmonic signals and the input audio signal. The low frequency component of the audio signal can be enhanced using human characteristics of perception without physically boosting the energy of the low frequency component.
Abstract:
A method and apparatus to enhance a low frequency component of an audio signal, by computing a fundamental frequency of an input audio signal using the input audio signal and a delayed audio signal obtained by delaying the input audio signal by a predetermined amount of time, generating harmonic signals from the input audio signal based on the fundamental frequency, and combining the harmonic signals and the input audio signal. The low frequency component of the audio signal can be enhanced using human characteristics of perception without physically boosting the energy of the low frequency component.
Abstract:
An active audio matrix decoding method and apparatus to generate multi-channel audio signals from a stereo channel audio signal. The method includes: decoding a stereo channel audio signal into a multi-channel signal, extracting a power vector of each channel signal by multiplying a magnitude of each decoded channel signal by positions of a plurality of channel speakers, extracting a vector of a virtual sound source existing between each channel by linearly combining power vector values of each decoded channel, extracting a vector value of a dominant sound image by linear combination of the vectors of the extracted virtual sound sources and normalizing the position of each channel speaker with respect to the vector value of the dominant sound image, and distributing a gain value to each channel position by comparing the magnitude of an entire decoded channel signal with the magnitude of each channel signal.
Abstract:
A method of delivering a therapeutic substance to tissue comprises delivering the therapeutic substance and nanoparticles to the tissue, the nanoparticles having a diameter in the range from 10 to 1000 nm and surface features having a depth in the range from 5 to 50 nm, and insonating the tissue with pressure waves. Corresponding particles, and associated methods of controlling and imaging the treatment and delivery are also disclosed.
Abstract:
An ultrasound system comprises a transducer, a controller arranged to generate control signals arranged to control the transducer to generate pressure waves directed at a target volume, and sensing means arranged to sense cavitation in the target volume. The controller is arranged to receive sensing signals from the sensing means and to vary the control signals in response to the sensing signals thereby to control the cavitation.
Abstract:
A method and an apparatus to synchronize an audio signal and a video signal. The method includes: displaying video on a screen that corresponds to an audio signal including a high frequency component having a predetermined pattern inserted therein to indicate when a scene change occurs in a video signal, detecting a scene change in the displayed video and detecting the high frequency component having the predetermined pattern in the audio signal, calculating a time difference between a time when the scene change is detected in the displayed video and a time when the high frequency component having the predetermined pattern is detected in the audio signal, and controlling delay times of the audio signal and the video signal according to the calculated time difference. Accordingly, the audio signal and the video signal can be automatically synchronized without performing a separate measuring operation.
Abstract:
A method of at least partially removing the nucleus pulposus of an intervertebral disc comprising the nucleus and an annulus surrounding the nucleus is described. The method comprises the steps of: insonating the nucleus with ultrasound thereby to cause at least partial fragmentation of the nucleus; and extracting at least part of the fragmented nucleus. A system for performing the method is also described.
Abstract:
Various apparatus and methods using phase change materials are disclosed. In one aspect, a method of operating a computing device that has a first semiconductor chip with a first phase change material and a second semiconductor chip with a second phase change material is provided. The method includes determining if the first semiconductor chip phase change material has available thermal capacity. If the first semiconductor chip phase change material has available thermal capacity then the first semiconductor chip is instructed to operate in sprint mode. The first semiconductor chip is instructed to perform a first computing task while in sprint mode.