摘要:
Some aspects relate to a semiconductor device disposed on a semiconductor substrate. The device includes an STI region that laterally surrounds a base portion of a semiconductor fin. An anode region, which has a first conductivity type, and a cathode region, which has a second conductivity type, are arranged in an upper portion of the semiconductor fin. A first doped base region, which has the second conductivity type, is arranged in the base of the fin underneath the anode region. A second doped base region, which has the first conductivity type, is arranged in the base of the fin underneath the cathode region. A current control unit is arranged between the anode region and the cathode region. The current control unit is arranged to selectively enable and disable current flow in the upper portion of the fin based on a trigger signal. Other devices and methods are also disclosed.
摘要:
In various embodiments, a semiconductor device is provided. The semiconductor device may include a first source/drain region, a second source/drain region, an active region electrically coupled between the first source/drain region and the second source/drain region, a trench disposed between the second source/drain region and at least a portion of the active region, a first isolation layer disposed over the bottom and the sidewalls of the trench, electrically conductive material disposed over the isolation layer in the trench, a second isolation layer disposed over the active region, and a gate region disposed over the second isolation layer. The electrically conductive material may be coupled to an electrical contact.
摘要:
Some embodiments relate to an electrostatic discharge (ESD) protection device to protect a circuit from an ESD event. The ESD protection device includes first and second trigger elements. Upon detecting an ESD pulse, the first trigger element provides a first trigger signal having a first pulse length. The second trigger element, upon detecting the ESD pulse, provides a second trigger signal having a second pulse length. The second pulse length is different from the first pulse length. A primary shunt shunts power of the ESD pulse away from the ESD susceptible circuit based on the first trigger signal. A current control element selectively pumps current due to the ESD pulse into a substrate of the primary shunt based on the second trigger signal.
摘要:
In an embodiment of the invention, a semiconductor device includes a first region having a first doping type, a channel region having the first doping type disposed in the first region, and a retrograde well having a second doping type. The second doping type is opposite to the first doping type. The retrograde well has a shallower layer with a first peak doping and a deeper layer with a second peak doping higher than the first peak doping. The device further includes a drain region having the second doping type over the retrograde well. An extended drain region is disposed in the retrograde well, and couples the channel region with the drain region. An isolation region is disposed between a gate overlap region of the extended drain region and the drain region. A length of the drain region is greater than a depth of the isolation region.
摘要:
A method and a system for ESD protection are provided. In one embodiment, the system comprises a circuit comprising at least one non-linear element, an application module configured to apply a set of current pulses to the circuit, a determination module configured to determine at least one frequency-dependent and amplitude-dependent transfer function of the circuit based on the set of applied current pulses, a modeling module configured to model at least one frequency-dependent and current-dependent impedance of the at least one non-linear element, and a simulation module to simulate a transmission to the circuit based on the model.
摘要:
A semiconductor sensor device is electrically coupled to an object. An attachment member attaches the semiconductor sensor device to the object. The attachment member comprises a first conductive contact region and a second conductive contact region. An insulating portion is electrically isolates the semiconductor sensor device from the first conductive contact region and second conductive contact region.
摘要:
A gate controlled fin resistance element for use as an electrostatic discharge (ESD) protection element in an electrical circuit has a fin structure having a first connection region, a second connection region and a channel region formed between the first and second connection regions. Furthermore, the fin resistance element has a gate region formed at least over a part of the surface of the channel region. The gate region is electrically coupled to a gate control device, which gate control device controls an electrical potential applied to the gate region in such a way that the gate controlled fin resistance element has a high electrical resistance during a first operating state of the electrical circuit and a lower electrical resistance during a second operating state, which is characterized by the occurrence of an ESD event.
摘要:
In an embodiment, an apparatus includes a first field effect transistor including a first source contact region, a first drain contact region and a first plurality of fins overlying a substrate, a first gate overlying the first plurality of fins, the first source contact region coupled to first ends of the first plurality of fins, and a second field effect transistor including a second source contact region, a second drain contact region, and a second plurality of fins overlying the substrate, a second gate overlying the second plurality of fins, and an interconnection contact region overlying the substrate, electrically coupling the first drain contact region and the second source contact region and abutting the first and the second pluralities of fins.
摘要:
In an embodiment, a semiconductor device is provided. The semiconductor device may include a substrate having a main processing surface, a first source/drain region comprising a first material of a first conductivity type, a second source/drain region comprising a second material of a second conductivity type, wherein the second conductivity type is different from the first conductivity type, a body region electrically coupled between the first source/drain region and the second source/drain region, wherein the body region extends deeper into the substrate than the first source/drain region in a first direction that is perpendicular to the main processing surface of the substrate, a gate dielectric disposed over the body region, and a gate region disposed over the gate dielectric, wherein the gate region overlaps with at least a part of the first source/drain region and with a part of the body region in the first direction.
摘要:
A program-controlled arrangement for the identification of ESD and/or latch-up weak points in the design or in the concept of an integrated circuit comprises a pre-processor, which processes first data about the description of the integrated circuit, second data about already ESD-characterized circuit parts of the integrated circuit, and third data which contain information about ESD test standards. A simulator device is connected downstream of the pre-processor which has a simulator which, by using the fourth and fifth data generated by the pre-processor, performs an ESD simulation of the integrated circuit, which has a monitoring controller for controlling the ESD simulation sequence in the simulator. An analysis device is connected downstream of the simulator device, which performs an evaluation of the sixth data generated in the simulator device with regard to their physical validity and meaningfulness, and marks the simulation runs having physically relevant ESD failure events.