摘要:
A corrective for eliminating the third-order aperture aberration and the first-order, first-degree axial chromatic aberration includes two correction pieces, which are arranged one behind the other in the direction of the optical axis, in which each correction piece has a plurality of quadrupole fields (QP) and at least one octupole field (OP.) Each correction piece is constructed such that it is symmetrical with respect to its central plane (S, S′) with each correction piece having an uneven number of at least five quadrupole fields (QP) and at least one octupole field (OP). Each correction piece is further constructed so that it is symmetrical with respect to its central plane. The central quadrupole field is arranged so that it is centered with respect to the central plane of the correction piece and is electromagnetic. The quadrupole fields of the two correction pieces are antisymmetrical and a transfer lens system is arranged such that it is symmetrical with respect to the central plane of the corrective between the correction pieces. The transfer lens system has two round lenses and the setting of the transfer lens system takes place so that the two round lenses image the central plane of the two correction pieces anamorphically onto one another, in which the enlargement in one main section is the reciprocal of the enlargement in the other main section and with an octupole field superimposed on the central quadrupole field.
摘要:
A corrector (1) for the axial and off-axial beam path of a particle-optical system, comprises a first (10) and a second (20) correction piece, which are disposed one behind the other in the beam path (2) on an optical axis (3). Each correction piece (10, 20) comprises four successive multipole elements (11, 12, 13, 14; 24, 23, 22, 21) disposed symmetrically with respect to a center plane (5) and with the following fields: wherein the first (11; 24) and the fourth (14; 21) multipole elements of the multipole elements (11, 12, 13, 14; 24, 23, 22, 21) are used to generate quadrupole fields (11′, 14′; 24′, 21′) and the second (12; 23) and third (13; 22) are used to generate octupole fields (12′″, 13′″; 23′″,22′″) and quadrupole fields (12′, 13′; 23′,22′), wherein the latter are superposed magnetic (12′, 13′; 23′, 22′) and electric fields (12″, 13″; 23″, 22″), wherein the quadrupole fields (11′, 12′, 13′, 14′; 24′, 23′, 22′, 21′) of all four multipole elements (11, 12, 13, 14; 24, 23, 22,21) are rotated from one to the next through 90°. An astigmatism of third order is corrected by a central multipole element disposed in the center plane and generating an octupole field.
摘要:
A corrective for eliminating the third-order aperture aberration and the first-order, first-degree axial chromatic aberration includes two correction pieces, which are arranged one behind the other in the direction of the optical axis, in which each correction piece has a plurality of quadrupole fields (QP) and at least one octupole field (OP.) Each correction piece is constructed such that it is symmetrical with respect to its central plane (S, S′) with each correction piece having an uneven number of at least five quadrupole fields (QP) and at least one octupole field (OP). Each correction piece is further constructed so that it is symmetrical with respect to its central plane. The central quadrupole field is arranged so that it is centered with respect to the central plane of the correction piece and is electromagnetic. The quadrupole fields of the two correction pieces are antisymmetrical and a transfer lens system is arranged such that it is symmetrical with respect to the central plane of the corrective between the correction pieces. The transfer lens system has two round lenses and the setting of the transfer lens system takes place so that the two round lenses image the central plane of the two correction pieces anamorphically onto one another, in which the enlargement in one main section is the reciprocal of the enlargement in the other main section and with an octupole field superimposed on the central quadrupole field.
摘要:
The invention is directed to a corrector for correcting energy-dependent first-order aberrations of the first degree as well as third-order spherical aberrations of electron-optical lens systems. The corrector includes at least one quadropole septuplet (S1) having seven quadrupoles (Q1 to Q7). The quadrupoles are mounted symmetrically to a center plane (ZS) so as to permit excitation along a linear axis. The corrector furthermore includes at least five octopoles (O1 to O7) which can be excited within the quadrupole septuplet. In an advantageous embodiment, two quadrupole septuplets are mounted in series one behind the other. The quadrupole fields of the two quadrupole septuplets are excited antisymmetrically to a center plane lying between the two quadrupole septuplets. With such a system, all geometric third-order aberrations and additional energy-dependent first-order aberrations of the third degree and geometric fifth-order aberrations of a lens system can be corrected in addition to the axial and off-axial first-order chromatic aberrations of the first degree.
摘要:
An electron-optical lens arrangement with an axis that can be substantially displaced, and useful for electron lithography, includes a cylinder lens and a quadrupole field. The plane of symmetry of the quadrupole field extends in the mid-plane of the gap pertaining to the cylinder lens. The focussing level of the quadrupole is oriented in the direction of the gap. The amount of the focussing refractive power belonging to the cylinder lens is twice as high as the amount of the quadrupole. A deflection system for the charged particles is connected upstream in the level of the gap pertaining to the cylinder lens and several electrodes or pole shoes, which generate a quadrupole field are provided in the direction of the gap pertaining to the cylinder lens. The electrodes or pole shoes can be individually and, preferably, successively excited and the quadrupole field can be displaced according to the deflection of the particle beam, so that the particle beam impinges upon the area of the quadrupole field. A holding device is provided for an object, such as a wafer, and is arranged vertically in relation to the optical axis and can be displaced in relation to the direction of the gap pertaining to the cylinder lens.
摘要:
An electron beam apparatus has a primary beam directed onto a point of a specimen to generate emerging secondary electrons that proceed to a detector after traversing an electrical extraction field. The extraction field is provided between electrodes arranged in a plane perpendicular to the optical axis of the electron beam device and a magnetic field is provided perpendicular to the electrical extraction field to compensate for the forces of the extraction field exerted on the primary beam yet to promote extraction of the secondary electrons.
摘要:
A phase-shifting element for shifting a phase of at least a portion of a particle beam is described, as well as a particle beam device having a phase-shifting element of this type. In the phase-shifting element and the particle beam device having a phase-shifting element, components shadowing the particle beam are avoided, so that proper information content is achieved and in which the phase contrast is essentially spatial frequency-independent. The phase-shifting element may have at least one means for generating a non-homogeneous or anisotropic potential. The particle beam device according to the system described herein may be provided with the phase-shifting element.
摘要:
A phase-shifting element for shifting a phase of at least a portion of a particle beam is described, as well as a particle beam device having a phase-shifting element of this type. In the phase-shifting element and the particle beam device having a phase-shifting element, components shadowing the particle beam are avoided, so that proper information content is achieved and in which the phase contrast is essentially spatial frequency-independent. The phase-shifting element may have at least one means for generating a non-homogeneous or anisotropic potential. The particle beam device according to the system described herein may be provided with the phase-shifting element.
摘要:
The invention relates to a method for producing image contrast by phase shifting in the electron optics, wherein, from an intermediate image (5), an anamorphic image (6, 6′) of the axial rays (xα, yβ) is produced by quadrupole fields (Q1′, Q2′, Q3′; Q11′, Q12′, Q13′) with simultaneous passage through zero of the field rays (xγ, yδ) in at least one diffraction intermediate image plane (8, 8′), where a relative phase shift between a region (14) around the electron beam of zeroth order of diffraction (13) and the electron beams of higher orders of diffraction (15) is caused by a magnetic or electric field (9, 9′), and thereafter the at least one anamorphosis of the beam path produced is corrected again by further quadrupole fields (Q4′, Q5′; Q13′, Q14′, Q15′). According to the invention, the image contrast can be further improved without causing aberrations that are no longer tolerable by using, for production and correction of the at least one anamorphic image (6, 6′), quadrupole fields (Q2′, Q4′; Q12′, Q14′) before and after this image (6, 6′) whose extent in the direction of the optical axis (10) is equal to at least twice their focal length, and wherein at least one of the axial rays (xα, yβ), by an appropriate choice of the magnification M of the intermediate image (5), enters the quadrupole field (Q2′, Q12′) before the at least one anamorphic image (6, 6′) at a slope 1/M such that a length (7) of the anamorphic image (6, 6′) is achieved at which any aberrations caused are still within a tolerable range. The invention also relates to devices for implementing this method.
摘要:
A corrector (1) for the axial and off-axial beam path of a particle-optical system, comprises a first (10) and a second (20) correction piece, which are disposed one behind the other in the beam path (2) on an optical axis (3). Each correction piece (10, 20) comprises four successive multipole elements (11, 12, 13, 14; 24, 23, 22, 21) disposed symmetrically with respect to a center plane (5) and with the following fields: wherein the first (11; 24) and the fourth (14; 21) multipole elements of the multipole elements (11, 12, 13, 14; 24, 23, 22, 21) are used to generate quadrupole fields (11′, 14′; 24′, 21′) and the second (12; 23) and third (13; 22) are used to generate octupole fields (12′″, 13′″;23′″,22′″) and quadrupole fields (12′, 13′; 23′,22′), wherein the latter are superposed magnetic (12′, 13′; 23′, 22′) and electric fields (12″, 13″; 23″, 22″), wherein the quadrupole fields (11′, 12′, 13′, 14′; 24′, 23′, 22′, 21′) of all four multipole elements (11, 12, 13, 14; 24, 23, 22,21) are rotated from one to the next through 90°. An astigmatism of third order is corrected by a central multipole element disposed in the center plane and generating an octupole field.