摘要:
An integrated circuit structure includes a semiconductor substrate, and a first and a second MOS device. The first MOS device includes a first gate dielectric over the semiconductor substrate, wherein the first gate dielectric is planar; and a first gate electrode over the first gate dielectric. The second MOS device includes a second gate dielectric over the semiconductor substrate; and a second gate electrode over the second gate dielectric. The second gate electrode has a height greater than a height of the first gate electrode. The second gate dielectric includes a planar portion underlying the second gate electrode, and sidewall portions extending on sidewalls of the second gate electrode.
摘要:
An integrated circuit structure includes a semiconductor substrate, and a first and a second MOS device. The first MOS device includes a first gate dielectric over the semiconductor substrate, wherein the first gate dielectric is planar; and a first gate electrode over the first gate dielectric. The second MOS device includes a second gate dielectric over the semiconductor substrate; and a second gate electrode over the second gate dielectric. The second gate electrode has a height greater than a height of the first gate electrode. The second gate dielectric includes a planar portion underlying the second gate electrode, and sidewall portions extending on sidewalls of the second gate electrode.
摘要:
A semiconductor structure and methods of forming the same are provided. The semiconductor structure includes a semiconductor substrate; a first inter-layer dielectric (ILD) over the semiconductor substrate; a contact extending from a top surface of the first ILD into the first ILD; a second ILD over the first ILD; a bottom inter-metal dielectric (IMD) over the second ILD; and a dual damascene structure comprising a metal line in the IMD and a via in the second ILD, wherein the via is connected to the contact.
摘要:
A semiconductor device having a core device with a high-k gate dielectric and an I/O device with a silicon dioxide or other non-high-k gate dielectric, and a method of fabricating such a device. A core well and an I/O well are created in a semiconductor substrate and separated by an isolation structure. An I/O device is formed over the I/O well and has a silicon dioxide or a low-k gate dielectric. A resistor may be formed on an isolation structure adjacent to the core well. A core-well device such as a transistor is formed over the core well, and has a high-k gate dielectric. In some embodiments, a p-type I/O well and an n-type I/O well are created. In a preferred embodiment, the I/O device or devices are formed prior to forming the core device and protected with a sacrificial layer until the core device is fabricated.
摘要:
A device and a method for forming a metal silicide is presented. A device, which includes a gate region, a source region, and a drain region, is formed on a substrate. A metal is disposed on the substrate, followed by a first anneal, forming a metal silicide on at least one of the gate region, the source region, and the drain region. The unreacted metal is removed from the substrate. The metal silicide is implanted with atoms. The implant is followed by a super anneal of the substrate.
摘要:
A method for defining a layout of 3-D devices, such as a finFET, is provided. The method includes determining an area required by a desired 3-D device and designing a circuit using planar devices having an equivalent area. The planar device corresponding to the desired 3-D device is used to layout a circuit design, thereby allowing circuit and layout designers to work at a higher level without the need to specify each individual fin or 3-D structure. Thereafter, the planar design may be converted to a 3-D design by replacing planar active areas with 3-D devices occupying an equivalent area.
摘要:
A semiconductor device having a core device with a high-k gate dielectric and an I/O device with a silicon dioxide or other non-high-k gate dielectric, and a method of fabricating such a device. A core well and an I/O well are created in a semiconductor substrate and separated by an isolation structure. An I/O device is formed over the I/O well and has a silicon dioxide or a low-k gate dielectric. A resistor may be formed on an isolation structure adjacent to the core well. A core-well device such as a transistor is formed over the core well, and has a high-k gate dielectric. In some embodiments, a p-type I/O well and an n-type I/O well are created. In a preferred embodiment, the I/O device or devices are formed prior to forming the core device and protected with a sacrificial layer until the core device is fabricated.
摘要:
A semiconductor structure includes an array of unit metal-oxide-semiconductor (MOS) devices arranged in a plurality of rows and a plurality of columns is provided. Each of the unit MOS devices includes an active region laid out in a row direction and a gate electrode laid out in a column direction. The semiconductor structure further includes a first unit MOS device in the array and a second unit MOS device in the array, wherein active regions of the first and the second unit MOS devices have different conductivity types.
摘要:
A strain-induced layer is formed atop a MOS device in order to increase carrier mobility in the channel region. The dimension of the strain-induced layer in preferred embodiments may lead to an optimized drive current increase and improved drive current uniformity in an NMOS and PMOS device. An advantage of the preferred embodiments is that improved device performance is obtained without adding complex processing steps. A further advantage of the preferred embodiments is that the added processing steps can be readily integrated into a known CMOS process flow. Moreover, the creation of the photo masks defining the tensile and compressive strain-induced layers does not require extra design work on an existed design database.
摘要:
A semiconductor structure includes an array of unit metal-oxide-semiconductor (MOS) devices arranged in a plurality of rows and a plurality of columns is provided. Each of the unit MOS devices includes an active region laid out in a row direction and a gate electrode laid out in a column direction. The semiconductor structure further includes a first unit MOS device in the array and a second unit MOS device in the array, wherein active regions of the first and the second unit MOS devices have different conductivity types.