摘要:
An integrated circuit structure includes a semiconductor substrate, and a first and a second MOS device. The first MOS device includes a first gate dielectric over the semiconductor substrate, wherein the first gate dielectric is planar; and a first gate electrode over the first gate dielectric. The second MOS device includes a second gate dielectric over the semiconductor substrate; and a second gate electrode over the second gate dielectric. The second gate electrode has a height greater than a height of the first gate electrode. The second gate dielectric includes a planar portion underlying the second gate electrode, and sidewall portions extending on sidewalls of the second gate electrode.
摘要:
An integrated circuit structure includes a semiconductor substrate, and a first and a second MOS device. The first MOS device includes a first gate dielectric over the semiconductor substrate, wherein the first gate dielectric is planar; and a first gate electrode over the first gate dielectric. The second MOS device includes a second gate dielectric over the semiconductor substrate; and a second gate electrode over the second gate dielectric. The second gate electrode has a height greater than a height of the first gate electrode. The second gate dielectric includes a planar portion underlying the second gate electrode, and sidewall portions extending on sidewalls of the second gate electrode.
摘要:
The present disclosure provides a semiconductor device that includes a semiconductor substrate and a transistor formed in the substrate. The transistor includes a gate stack having a high-k dielectric and metal gate, a sealing layer formed on sidewalls of the gate stack, the sealing layer having an inner edge and an outer edge, the inner edge interfacing with the sidewall of the gate stack, a spacer formed on the outer edge of the sealing layer, and a source/drain region formed on each side of the gate stack, the source/drain region including a lightly doped source/drain (LDD) region that is aligned with the outer edge of the sealing layer.
摘要:
The present disclosure provides a semiconductor device that includes a semiconductor substrate and a transistor formed in the substrate. The transistor includes a gate stack having a high-k dielectric and metal gate, a sealing layer formed on sidewalls of the gate stack, the sealing layer having an inner edge and an outer edge, the inner edge interfacing with the sidewall of the gate stack, a spacer formed on the outer edge of the sealing layer, and a source/drain region formed on each side of the gate stack, the source/drain region including a lightly doped source/drain (LDD) region that is aligned with the outer edge of the sealing layer.
摘要:
The present disclosure provides a semiconductor device that includes a semiconductor substrate and a transistor formed in the substrate. The transistor includes a gate stack having a high-k dielectric and metal gate, a sealing layer formed on sidewalls of the gate stack, the sealing layer having an inner edge and an outer edge, the inner edge interfacing with the sidewall of the gate stack, a spacer formed on the outer edge of the sealing layer, and a source/drain region formed on each side of the gate stack, the source/drain region including a lightly doped source/drain (LDD) region that is aligned with the outer edge of the sealing layer.
摘要:
The present disclosure provides a semiconductor device that includes a semiconductor substrate and a transistor formed in the substrate. The transistor includes a gate stack having a high-k dielectric and metal gate, a sealing layer formed on sidewalls of the gate stack, the sealing layer having an inner edge and an outer edge, the inner edge interfacing with the sidewall of the gate stack, a spacer formed on the outer edge of the sealing layer, and a source/drain region formed on each side of the gate stack, the source/drain region including a lightly doped source/drain (LDD) region that is aligned with the outer edge of the sealing layer.
摘要:
A semiconductor device using a CESL (contact etch stop layer) to induce strain in, for example, a CMOS transistor channel, and a method for fabricating such a device. A stress-producing CESL, tensile in an n-channel device and compressive in a p-channel device, is formed over the device gate structure as a discontinuous layer. This may be done, for example, by depositing an appropriate CESL, then forming an ILD layer, and simultaneously reducing the ILD layer and the CESL to a desired level. The discontinuity preferably exposes the gate electrode, or the metal contact region formed on it, if present. The upper boundary of the CESL may be further reduced, however, to position it below the upper boundary of the gate electrode.
摘要:
A semiconductor device and method for fabricating a semiconductor device is disclosed. The method includes providing semiconductor substrate having a first region and a second region, forming a high-k dielectric layer over the semiconductor substrate, forming a capping layer over the high-k dielectric layer, forming a metal layer over the capping layer, removing the metal layer and capping layer in the second region, forming a polysilicon layer over the metal layer in the first region and over the high-k dielectric layer in the second region, and forming an active device with the metal layer in the first region and forming a passive device without the metal layer in the second region.
摘要:
A semiconductor device using a CESL (contact etch stop layer) to induce strain in, for example, a CMOS transistor channel, and a method for fabricating such a device. A stress-producing CESL, tensile in an n-channel device and compressive in a p-channel device, is formed over the device gate structure as a discontinuous layer. This may be done, for example, by depositing an appropriate CESL, then forming an ILD layer, and simultaneously reducing the ILD layer and the CESL to a desired level. The discontinuity preferably exposes the gate electrode, or the metal contact region formed on it, if present. The upper boundary of the CESL may be further reduced, however, to position it below the upper boundary of the gate electrode.
摘要:
A method includes etching a semiconductor substrate to form a recess, wherein the recess extends from a top surface of the semiconductor substrate into the semiconductor substrate. An enhanced cleaning is then performed to etch exposed portions of the semiconductor substrate. The exposed portions are in the recess. The enhanced cleaning is performed using process gases including hydrochloride (HCl) and germane (GeH4). After the enhanced cleaning, an epitaxy is performed to grow a semiconductor region in the recess.