摘要:
A method of fabricating a semiconductor device includes providing a substrate having a first surface, forming an isolation structure disposed partly in the substrate and having an second surface higher than the first surface by a step height, removing a portion of the isolation structure to form a recess therein having a bottom surface disposed below the first surface, and forming a contact engaging the gate structure over the recess. A different aspect involves an apparatus that includes a substrate having a first surface, an isolation structure disposed partly in the substrate and having a second surface higher than the first surface by a step height, a recess extending downwardly from the second surface, the recess having a bottom surface disposed below the first surface, a gate structure, and a contact engaging the gate structure over the recess.
摘要:
A method of fabricating a semiconductor device includes providing a substrate having a first surface, forming an isolation structure disposed partly in the substrate and having an second surface higher than the first surface by a step height, removing a portion of the isolation structure to form a recess therein having a bottom surface disposed below the first surface, and forming a contact engaging the gate structure over the recess. A different aspect involves an apparatus that includes a substrate having a first surface, an isolation structure disposed partly in the substrate and having a second surface higher than the first surface by a step height, a recess extending downwardly from the second surface, the recess having a bottom surface disposed below the first surface, a gate structure, and a contact engaging the gate structure over the recess.
摘要:
The invention relates to integrated circuit fabrication, and more particularly to a metal gate structure. An exemplary structure for a CMOS semiconductor device comprises a substrate comprising an isolation region surrounding and separating a P-active region and an N-active region; a P-metal gate electrode over the P-active region and extending over the isolation region, wherein the P-metal gate electrode comprises a P-work function metal and an oxygen-containing TiN layer between the P-work function metal and substrate; and an N-metal gate electrode over the N-active region and extending over the isolation region, wherein the N-metal gate electrode comprises an N-work function metal and a nitrogen-rich TiN layer between the N-work function metal and substrate, wherein the nitrogen-rich TiN layer connects to the oxygen-containing TiN layer over the isolation region.
摘要:
The invention relates to integrated circuit fabrication, and more particularly to a metal gate structure. An exemplary structure for a CMOS semiconductor device comprises a substrate, an N-metal gate electrode, and a P-metal gate electrode. The substrate comprises an isolation region surrounding a P-active region and an N-active region. The N-metal gate electrode comprises a first metal composition over the N-active region. The P-metal gate electrode comprises a bulk portion over the P-active region and an endcap portion over the isolation region. The endcap portion comprises the first metal composition and the bulk portion comprises a second metal composition different from the first metal composition.
摘要:
Methods of forming a semiconductor structure and the semiconductor structure are disclosed. In one embodiment, a method includes forming a gate dielectric layer over a substrate, forming a gate electrode layer over the gate dielectric layer, and etching the gate electrode layer and the gate dielectric layer to form a horizontal gate structure and a vertical gate structure, wherein the horizontal gate structure and the vertical gate structure are connected by an interconnection portion. The method further includes forming a photoresist covering the horizontal gate structure and the vertical gate structure, with the photoresist having a gap exposing the interconnection portion between the horizontal gate structure and the vertical gate structure, and then etching the interconnection portion.
摘要:
This disclosure relates to a spacer structure of a field effect transistor. An exemplary structure for a field effect transistor includes a substrate; a gate structure that has a sidewall overlying the substrate; a silicide region in the substrate on one side of the gate structure having an inner edge closest to the gate structure; a first oxygen-sealing layer adjoining the sidewall of the gate structure; an oxygen-containing layer adjoining the first oxygen-sealing layer on the sidewall and further including a portion extending over the substrate; and a second oxygen-sealing layer adjoining the oxygen-containing layer and extending over the portion of the oxygen-containing layer over the substrate, wherein an outer edge of the second oxygen-sealing layer is offset from the inner edge of the silicide region.
摘要:
The disclosure relates to spacer structures of a semiconductor device. An exemplary structure for a semiconductor device comprises a substrate having a first active region and a second active region; a plurality of first gate electrodes having a gate pitch over the first active region, wherein each first gate electrode has a first width; a plurality of first spacers adjoining the plurality of first gate electrodes, wherein each first spacer has a third width; a plurality of second gate electrodes having the same gate pitch as the plurality of first gate electrodes over the second active region, wherein each second gate electrode has a second width greater than the first width; and a plurality of second spacers adjoining the plurality of second gate electrodes, wherein each second spacer has a fourth width less than the third width.
摘要:
The invention relates to integrated circuit fabrication, and more particularly to a metal gate structure. An exemplary structure for a CMOS semiconductor device comprises a substrate comprising a P-active region, an N-active region, and an isolation region interposed between the P- and N-active regions; a P-metal gate electrode over the P-active region, that extends over the isolation region; and an N-metal gate electrode having a first width over the N-active region, that extends over the isolation region and has a contact section in the isolation region electrically contacting the P-metal gate electrode, wherein the contact section has a second width greater than the first width.
摘要:
A method includes providing a substrate having a first surface, forming an isolation structure disposed partly in the substrate and having an second surface higher than the first surface by a step height, removing a portion of the isolation structure to form a recess therein having a bottom surface spaced from the first surface by less than the step height, forming a gate structure, and forming a contact engaging the gate structure over the recess. A different aspect involves an apparatus that includes a substrate having a first surface, an isolation structure disposed partly in the substrate and having a second surface higher than the first surface by a step height, a recess extending downwardly from the second surface, the recess having a bottom surface spaced from the first surface by less than the step height, a gate structure, and a contact engaging the gate structure over the recess.
摘要:
This disclosure relates to a spacer structure of a field effect transistor. An exemplary structure for a field effect transistor includes a substrate; a gate structure that has a sidewall overlying the substrate; a silicide region in the substrate on one side of the gate structure having an inner edge closest to the gate structure; a first oxygen-sealing layer adjoining the sidewall of the gate structure; an oxygen-containing layer adjoining the first oxygen-sealing layer on the sidewall and further including a portion extending over the substrate; and a second oxygen-sealing layer adjoining the oxygen-containing layer and extending over the portion of the oxygen-containing layer over the substrate, wherein an outer edge of the second oxygen-sealing layer is offset from the inner edge of the silicide region.