摘要:
A catalyst which is able to express a high oligomerizing activity of ethylene and a method for the production of &agr;-olefin where ethylene is oligomerized using said catalyst are provided. The present invention relates to a catalyst for the production of &agr;-olefin obtained by contacting (a) clay, clay mineral or ion-exchange layer compound with (b-1) a transition metal complex of Groups 4 to 6 of the Periodic Table and also relates to a method for the production of &agr;-olefin by oligomerization of ethylene using said catalyst. The present invention further relates to a catalyst for the production of &agr;-olefin obtained by contacting (a) clay, clay mineral or ion-exchange layer compound with (b-2) a transition metal complex of Groups 8 to 10 of the Periodic Table and also relates to a method of the production of &agr;-olefin by oligomerization of ethylene using said catalyst.
摘要:
A catalyst for polymerizing vinyl compounds or α-olefins according to the present invention includes (A) a transition metal complex, (B) a clay, clay mineral or ion-exchangeable layered compound, modified with at least one organic compound selected from the group consisting of quaternary ammonium salts, amine compounds, and adducts of amine and Brönsted acid, and (C) at least one aluminoxy compound. The transition metal in (A) is selected from Groups 4 to 10 or Groups 8 to 10 of the Periodic Table for catalysts for vinyl compounds or α-olefins, respectively. The aluminoxy compound is represented by the general Formula wherein a plurality of R groups are each independently C1-10 hydrocarbon group and at least one of the R groups is a hydrocarbon group having 2 or more carbon atoms; and z is an integer of 2 or more for catalyst for vinyl compounds and 2 to 4 for catalysts for α-olefins.
摘要:
The catalyst for polymerizing vinyl compounds according to the present invention comprises (A) a complex of Group 4 to 10 transition metal of the Periodic Table, (B) a clay, clay mineral or ion-exchangeable layered compound, and (C) at least one aluminoxy compound represented by Formula (1): wherein a plurality of R groups are each independently C1-10 hydrocarbon group and at least one of the R groups is a hydrocarbon group having 2 or more carbon atoms; and x is an integer of 2 or more. By using the Group 4 to 10 transition metal complex and the clay, clay mineral or ion-exchangeable layered compound in combination with the specific aluminoxy compound, vinyl polymers are produced at a high efficiency. Also, the catalyst for producing &agr;-olefins according to the present invention comprises (A′) a complex of Group 8 to 10 transition metal of the Periodic Table, (B′) an organic compound-modified clay, clay mineral or ion-exchangeable layered compound, and (C′) at least one aluminoxy compound represented by Formula (2): wherein a plurality of R groups are each independently C1-10 hydrocarbon group and at least one of the R groups is a hydrocarbon group having 2 or more carbon atoms; and y is an integer of 2 to 4. Since the organic compound-modified clay, clay mineral or ion-exchangeable layered compound absorbs other catalyst components between layers thereof, the elution of the catalyst components into liquid phase is effectively prevented, thereby facilitating the separation of the catalyst from a reaction product.
摘要:
A transition metal compound of Groups to 10 of the Periodic Table, represented by the following formula (1): wherein M represents a transition metal of Groups 8 to 10 of the Periodic Table; L, electrically neutral, represents a hetero atom-containing hydrocarbon group represented by the following formula (2) wherein R1 to R5 each independently represent a hydrogen atom, a halogen atom, a hydrocarbon group having form 1 to 20 carbon atoms, a halogenohydrocarbon group having from 1 to 20 carbon atoms, or a hetero atom-containing group, and optionally these groups are bonded to each other to form a ring; R6 represents a hydrogen atom, a hydrocarbon group having form 1 to 40 carbon atoms, a halogenohydrocarbon group having from 1 to 40 carton atoms, or a hetero atom-containing group; L′ electrically neutral, represents a hetero atom-containing hydrocarbon group represented by the following formula (3) wherein R7 to R11 each independently represent a hydrogen atom, a halogen atom, a hydrocarbon group having from 1 to 20 carbon atoms, a halogenohydrocarbon group having from 1 to 20 carbon atoms, or a hetero atom-containing group, and optionally these groups are bonded to each other to form a ring; X represents a covalent-bonding or ionic-bonding group, and a plurality of X's are the same or different; Y represents an aromatic group-containing crosslinking group; Z is an integer of 1 or more, indicating the degree of polymerization of the compound; n indicates the atomic valency of M; and each of M, L, and Y are the same or different.
摘要:
A catalyst which is able to express a high oligomerizing activity of ethylene and a method for the production of &agr;-olefin where ethylene is oligomerized using said catalyst are provided. The present invention relates to a catalyst for the production of &agr;-olefin obtained by contacting (a) clay, clay mineral or ion-exchange layer compound with (b-1) a transition metal complex of Groups 4 to 6 of the Periodic Table and also relates to a method for the production of &agr;-olefin by oligomerization of ethylene using said catalyst. The present invention further relates to a catalyst for the production of &agr;-olefin obtained by contacting (a) clay, clay mineral or ion-exchange layer compound with (b-2) a transition metal complex of Groups 8 to 10 of the Periodic Table and also relates to a method of the production of &agr;-olefin by oligomerization of ethylene using said catalyst.
摘要:
A catalyst which comprises a compound of a transition metal in Groups 8 to 10 of the Periodic Table having a nitrogenous tridentate ligand, a clay, clay minteral, or lamellar ion-exchanging compound, an organosilane compound, and organoaluminum compound, etc.; and a process for producing a polyolefin with the catalyst. The catalyst is highly active, does not adhere to reactor walls, and can give a polyolefin excellent in powder morphology. Consequently, a polyolefin (especially polyethylene) can be industrially advantageously produced.
摘要:
The invention relates to high-activity catalysts for olefin polymerization, to efficient methods for producing them, and to efficient methods of using the catalysts for producing high-quality polyolefins. The olefin polymerization with the catalysts does not require a large amount of an organic aluminium compound, and the residual metal in the polyolefins produced is much reduced. The catalysts are characterized by containing a product as prepared by contacting any of clay, a clay mineral and an ion-exchanging layered compound, an organic silane compound, and water with each other, or by containing a silane compound-processed clay.
摘要:
Disclosed is a process for producing propylene oligomers at high selectivities which comprises oligomerizing propylene in the presence of a catalyst comprising an alkyl substituted cyclopentadienyl compound of zirconium and/or hafnium and a condensation product of organoaluminum compound and water.
摘要:
Novel styrene-based resin compositions comprising a styrene-based resin having a mainly syndiotactic configuration in compbination with one or more of: (A) thermoplastic resins other than the styrene-based resin, (B) a rubber polyers, and (C) inorganic fillers. The compositions have improved heat resistance and impact resistance over non-syndiotactic styrene-based resin compositions.
摘要:
There is disclosed a process for purification of a styrene polymer, for purifying a styrene polymer having a high degree of syndiotacticity obtained by using a catalyst comprising (A) aluminoxane and (B) a transition metal compound containing no halogen, deashing the above styrene polymer with an alcoholic alkaline solution and then washing with an alcohol. Also disclosed is a process for purification of a styrene polymer which comprises deashing the above styrene polymer having been produced with a conversion rate of 60% or more after swelling it by adding an aromatic solvent and/or a styrene monomer.According to the process of the present invention, a high purity styrene polymer can be obtained with good efficiency.