摘要:
Catalysts for replacing rhenium-containing multimetallic catalysts for the hydrogenolysis of organic compounds to desired polyols, including the conversion of glycerol to propylene glycol, are described. The catalysts are carried on carbon supports, as well as carbon supports impregnated with Zirconium Scandium (ZrSc), Zirconium Yttrium (ZrY), Titanium Scandium (TiSc), or Titanium Yttrium (TiY) to texture the carbon support and to create oxygen-ion vacancies that can be used during the desired reactions. Processes for the hydrogenolysis of organic compounds to desired polyols using the disclosed catalysts, including the conversion of glycerol to propylene glycol, are also described.
摘要:
Embodiments of methods for making renewable diesel by deoxygenating (decarboxylating/decarbonylating/dehydrating) fatty acids to produce hydrocarbons are disclosed. Fatty acids are exposed to a catalyst selected from a) Pt and MO3 on ZrO2 (M is W, Mo, or a combination thereof), or b) Pt/Ge or Pt/Sn on carbon, and the catalyst decarboxylates at least 10% of the fatty acids. In particular embodiments, the catalyst consists essentially of 0.7 wt % Pt and 12 wt % WO3, relative to a mass of catalyst, or the catalyst consists essentially of a) 5 wt % Pt and b) 0.5 wt % Ge or 0.5 wt % Sn, relative to a mass of catalyst. Deoxygenation is performed without added hydrogen and at less than 100 psi. Disclosed embodiments of the catalysts deoxygenate at least 10% of fatty acids in a fatty acid feed, and remain capable of deoxygenating fatty acids for at least 200 minutes to more than 350 hours.
摘要:
Presently disclosed are methods and apparatus for separation of reaction products from reaction mixtures in an ionic liquid catalysis process, particularly in conversion of biomass, cellulose, and sugars into chemical intermediates such as 5-hydroxymethylfurfural (HMF). In one embodiment an ion exclusion adsorption mechanism is used for the separation process. The process comprises (i) mixing the ionic liquid-containing reaction mixture with de-ionized water, (ii) flowing the water solution mixture into an adsorption column, (iii) eluting the column with a water- and/or alcohol-based fluid, and (iv) collecting separated fractions at different elution times.
摘要:
Embodiments of methods for making renewable diesel by deoxygenating (decarboxylating/decarbonylating/dehydrating) fatty acids to produce hydrocarbons are disclosed. Fatty acids are exposed to a catalyst selected from a) Pt and MO3 on ZrO2 (M is W, Mo, or a combination thereof), or b) Pt/Ge or Pt/Sn on carbon, and the catalyst decarboxylates at least 10% of the fatty acids. In particular embodiments, the catalyst consists essentially of 0.7 wt % Pt and 12 wt % WO3, relative to a mass of catalyst, or the catalyst consists essentially of a) 5 wt % Pt and b) 0.5 wt % Ge or 0.5 wt % Sn, relative to a mass of catalyst. Deoxygenation is performed without added hydrogen and at less than 100 psi. Disclosed embodiments of the catalysts deoxygenate at least 10% of fatty acids in a fatty acid feed, and remain capable of deoxygenating fatty acids for at least 200 minutes to more than 350 hours.
摘要:
Embodiments of methods for making renewable diesel by deoxygenating (decarboxylating/decarbonylating/dehydrating) fatty acids to produce hydrocarbons are disclosed. Fatty acids are exposed to a catalyst selected from a) Pt and MO3 on ZrO2 (M is W, Mo, or a combination thereof), or b) Pt/Ge or Pt/Sn on carbon, and the catalyst decarboxylates at least 10% of the fatty acids. In particular embodiments, the catalyst consists essentially of 0.7 wt % Pt and 12 wt % WO3, relative to a mass of catalyst, or the catalyst consists essentially of a) 5 wt % Pt and b) 0.5 wt % Ge or 0.5 wt % Sn, relative to a mass of catalyst. Deoxygenation is performed without added hydrogen and at less than 100 psi. Disclosed embodiments of the catalysts deoxygenate at least 10% of fatty acids in a fatty acid feed, and remain capable of deoxygenating fatty acids for at least 200 minutes to more than 350 hours.
摘要:
Presently disclosed are methods and apparatus for separation of reaction products from reaction mixtures in an ionic liquid catalysis process, particularly in conversion of biomass, cellulose, and sugars into chemical intermediates such as 5-hydroxymethylfurfural (HMF). In one embodiment an ion exclusion adsorption mechanism is used for the separation process. The process comprises (i) mixing the ionic liquid-containing reaction mixture with de-ionized water, (ii) flowing the water solution mixture into an adsorption column, (iii) eluting the column with a water- and/or alcohol-based fluid, and (iv) collecting separated fractions at different elution times.
摘要:
Methods are described for conversion of carbohydrate polymers in ionic liquids, including cellulose, that yield value-added chemicals including, e.g., glucose and 5-hydroxylmethylfurfural (HMF) at temperatures below 120° C. Catalyst compositions that include various mixed metal halides are described that are selective for specified products with yields, e.g., of up to about 56% in a single step process.
摘要:
Embodiments of methods for making renewable diesel by deoxygenating (decarboxylating/decarbonylating/dehydrating) fatty acids to produce hydrocarbons are disclosed. Fatty acids are exposed to a catalyst selected from a) Pt and MO3 on ZrO2 (M is W, Mo, or a combination thereof), or b) Pt/Ge or Pt/Sn on carbon, and the catalyst decarboxylates at least 10% of the fatty acids. In particular embodiments, the catalyst consists essentially of 0.7 wt % Pt and 12 wt % WO3, relative to a mass of catalyst, or the catalyst consists essentially of a) 5 wt % Pt and b) 0.5 wt % Ge or 0.5 wt % Sn, relative to a mass of catalyst. Deoxygenation is performed without added hydrogen and at less than 100 psi. Disclosed embodiments of the catalysts deoxygenate at least 10% of fatty acids in a fatty acid feed, and remain capable of deoxygenating fatty acids for at least 200 minutes to more than 350 hours.
摘要:
Embodiments of methods for making renewable diesel by deoxygenating (decarboxylating/decarbonylating/dehydrating) fatty acids to produce hydrocarbons are disclosed. Fatty acids are exposed to a catalyst selected from a) Pt and MO3 on ZrO2 (M is W, Mo, or a combination thereof), or b) Pt/Ge or Pt/Sn on carbon, and the catalyst decarboxylates at least 10% of the fatty acids. In particular embodiments, the catalyst consists essentially of 0.7 wt % Pt and 12 wt % WO3, relative to a mass of catalyst, or the catalyst consists essentially of a) 5 wt % Pt and b) 0.5 wt % Ge or 0.5 wt % Sn, relative to a mass of catalyst. Deoxygenation is performed without added hydrogen and at less than 100 psi. Disclosed embodiments of the catalysts deoxygenate at least 10% of fatty acids in a fatty acid feed, and remain capable of deoxygenating fatty acids for at least 200 minutes to more than 350 hours.
摘要:
Embodiments of methods for making renewable diesel by deoxygenating (decarboxylating/decarbonylating/dehydrating) fatty acids to produce hydrocarbons are disclosed. Fatty acids are exposed to a catalyst selected from a) Pt and MO3 on ZrO2 (M is W, Mo, or a combination thereof), or b) Pt/Ge or Pt/Sn on carbon, and the catalyst decarboxylates at least 10% of the fatty acids. In particular embodiments, the catalyst consists essentially of 0.7 wt % Pt and 12 wt % WO3, relative to a mass of catalyst, or the catalyst consists essentially of a) 5 wt % Pt and b) 0.5 wt % Ge or 0.5 wt % Sn, relative to a mass of catalyst. Deoxygenation is performed without added hydrogen and at less than 100 psi. Disclosed embodiments of the catalysts deoxygenate at least 10% of fatty acids in a fatty acid feed, and remain capable of deoxygenating fatty acids for at least 200 minutes to more than 350 hours.