Abstract:
The present invention relates to a piezoelectrical device whose electrode layers contain copper. The usage of copper in electrode layers is enabled by a debindering process, which is carried out by steam.
Abstract:
The invention relates to a piezoelectric multi-layer component with a plurality of piezoelectric layers (1) lying one above the other and with electrode layers (2a, 2b) arranged between the piezoelectric layers, wherein an absorption layer (4) of absorbing mechanical vibration energy is arranged in the layer stack.
Abstract:
A multilayer ceramic component includes a stack containing ceramic layers and electrode layers interspersed among the ceramic layers. The electrode layers contain copper and define first and second internal electrodes. First and second external contacts are on different sides of the stack. The first and second external contacts contain copper and are substantially perpendicular to the ceramic layers and electrode layers. The first internal electrode is connected to the first external contact and the second internal electrode is connected to the second external contact. The first and second internal electrodes overlap each other at a plane intersecting the stack. In areas adjacent to boundaries between the first and second external contacts and the ceramic layers, the first and second external contacts are not oxidized and material making-up the ceramic layers is not diminished. A bonding strength of the external contacts to the stack exceeds 50 N.
Abstract:
An actuator includes a stack of piezoelectric layers, and electrode layers between the piezoelectric layers. A stabilization element is attached to a side surface of the stack. The stabilization element fixes a height of the stack so that the height does not change when an operating voltage is applied to at least one of the electrode layers.
Abstract:
A piezoelectric transformer with a base body containing a piezoelectric material is disclosed. The piezoelectric material is polarized in an input part of the base body along a first axis and in an output part of the base body along a second axis perpendicular to the first axis. In a transition region between the input part and the output part, the polarization of the piezoelectric material gradually changes its direction from a polarization along the first axis to a polarization along the second axis.
Abstract:
A piezoactuator includes a base. The base contains a stack of piezoelectric layers and electrode layers interspersed among the piezoelectric layers. The piezoelectric layers contain a ceramic material; the piezoelectric layers and the electrode layers are sintered together; and the base has a hole therethrough. The piezoactuator also includes a contact element, such as a pin, in the hole. The contact element is for use in forming an electrical connection to at least some of the electrode layers.
Abstract:
A ceramic material includes first and second ceramic materials. The first ceramic material has a perovskite structure and defines a host lattice. The first ceramic material contains lead, zirconium and titanium, e.g., lead zirconate titanate. The second ceramic material has a cryolite structure. The ceramic material may be part of a piezo-actuator containing ceramic layers formed of the ceramic material.
Abstract:
A multilayer ceramic component includes a stack containing ceramic layers and electrode layers interspersed among the ceramic layers. The electrode layers contain copper and define first and second internal electrodes. First and second external contacts are on different sides of the stack. The first and second external contacts contain copper and are substantially perpendicular to the ceramic layers and electrode layers. The first internal electrode is connected to the first external contact and the second internal electrode is connected to the second external contact. The first and second internal electrodes overlap each other at a plane intersecting the stack. In areas adjacent to boundaries between the first and second external contacts and the ceramic layers, the first and second external contacts are not oxidized and material making-up the ceramic layers is not diminished. A bonding strength of the external contacts to the stack exceeds 50 N.
Abstract:
An electrical component includes a body made from a stack of ceramic layers. The body has a cavity that is accessible external to the body. The cavity is defined by a wall. A contact surface is on the wall. A contact device is electrically connected to the contact surface. At least part of the contact device is external to the body. The contact device includes a connection part and a spring. The spring is between the body and the connection part. The spring is for exerting a spring force on the contact surface.
Abstract:
A piezoelectric actuator includes a stack of piezoceramic layers and electrodes among the piezoelectric layers. At least one edge region of the stack does not include electrodes. A cover layer is at the at least one edge region. The cover layer has a dielectric constant that is less than a dielectric constant of a piezoceramic layer.