摘要:
A measuring sensor for determining oxygen content in a gas mixture including exhaust gases of internal combustion engines, includes a base substrate which is comprised of a base material and which is electrically insulating; and an electrochemical measuring probe and an electrochemical reference probe arranged separate from each other on the base substrate. The measuring probe includes at least one internal electrode; at least one solid electrolyte island; and at least one external electrode. The measuring probe additionally includes a diffusion barrier. Further base material layers composed of the base material are provided so as to embed at least the diffusion barrier, the at least one internal electrodes for the measuring probe and the internal electrode for the reference probe. A diffusion hole is defined between the measuring probe and the reference probe which extends from the base substrate through the diffusion barrier and respective base material layers, and out to the gas mixture to be measured. Thermal stress and the accompanying tendency to cracking is reduced by providing the solid electrolyte as islands. Separate disposition of the measuring probe and the reference probe, i.e., without a common electrode, permits construction as individual layers using, for example, screen printing.
摘要:
An electrochemical sensor for ascertaining gas concentrations in gases, particularly in exhaust gases of combustion engines, includes an oxygen-ion-conductive solid electrolyte which is provided with electrode layers arranged at a distance from one another and with at least one resistance heating element that is separated from the solid electrolyte by an electrical insulating layer, a foil binder layer being provided between the electrical insulating layer and the solid electrolyte. At least one electron-conductive intermediate layer is provided between the electrode-side electrical insulating layer and the adjacent solid electrolyte.
摘要:
A ceramic layer system including at least two layers having respective ion conductivities which are substantially different includes a substrate layer composed of a ceramic material and having substantially no ion conductivity; and at least one conducting layer positioned adjacent to the substrate layer, containing coated ceramic particles composed of ceramic particles composed of a ceramic material having no substantial ion conductivity which are coated with a material having a substantial ion conductivity so that each conducting layer of the at least one conducting layer has a continuous phase after sintering composed of the material which has a substantial ion conductivity and so that the at least one conducting layer has an ion conductivity effective to conduct ions. A method of producing a gas sensor for detecting small quantities of at least one gas in gas mixtures includes providing a substrate layer composed of ceramic particles composed of a material having substantially no ion conductivity; applying a layer composed of coated ceramic particles onto the substrate layer, the coated ceramic particles being composed of ceramic particles composed of a material that has no substantial ion conductivity coated with a material which has a substantial ion conductivity at the operating temperature of the gas sensor; applying at least one functional layer onto the layer composed of coated ceramic particles to provide a green body; preheating the green body to remove binding agents, plastifying agents, and any additional organic constituents; and sintering the green body after preheating by heating to a temperature effective to sinter the green body so that the layer comprised of coated ceramic particles has a continuous phase comprised of the material which has a substantial ion conductivity.
摘要:
The invention relates to a measuring sensor having pump reference for measuring the oxygen content of gas mixtures, particularly exhaust gases of internal combustion engines. The sensor includes a measuring cell (A) and a reference cell (B) each having a pair of electrodes, with one of each respective pairs of electrodes being common to the two cells, and having a fixed electrolyte. Reference cell (B) has defined therein an internal oxygen reference zone which is hermetically sealed from the gas mixture and which is connected to the atmosphere by way of a pressure-equalization line. The measuring cell (A) and the reference cell (B) can be heated by heating apparatus to a temperature at which the fixed electrolyte has an ionic conductivity which is sufficiently high. The heating apparatus and a porous insulation are advantageously disposed in the vicinity of the electrode of the reference cell which is not in common with the measuring cell and which is porous so that the porous insulation, together with the porous electrode, form the internal oxygen reference zone and, together with the porous electrode and its porous conductor track, form the pressure-equalization line.
摘要:
A passive, high-temperature-resistant resistor element for measuring temperature is provided, the resistor element having an essentially interior insulating layer and two exterior conducting layers of a ceramic composite structure; the conducting layers being connected to one another at the tip of the resistor element; and the ceramic composite structure including trisilicon tetranitride, a metal silicide, and yttrium oxide or trisilicon tetranitride, a metal silicide, and a matrix phase of SixOyCzNw, where x signifies 1–2, y signifies 0–2, and w signifies 0–2. A combination element of this resistor element and a sheathed type glow plug, for example, is also provided.
摘要翻译:提供了用于测量温度的被动耐高温电阻元件,电阻器元件具有基本上内部的绝缘层和两个陶瓷复合结构的外导电层; 所述导电层在所述电阻元件的尖端彼此连接; 以及包含三硅四氮化物,金属硅化物和氧化钇或四氧化三铁,金属硅化物和Si x O O y C y的基质相的陶瓷复合结构体 其中x表示1-2,y表示0-2,w表示0-2。 还提供了该电阻元件和护套型电热塞的组合元件。
摘要:
A method of producing ceramic greenware, in particular a ceramic green film, having a ceramic powder component as the main ingredient and at least one organic solvent-free component as a secondary ingredient. To do so, the ceramic powder component is processed with the organic components initially to yield a highly viscous, solvent-free starting material which is then shaped by an extruder to form the greenware or green film.
摘要:
A sensor element, especially a temperature sensor (5) is proposed, having a sensitive area (11), whose electrical resistance changes under the influence of a temperature to which the sensitive area (11) is exposed. In this case, sensitive area (11) has a glass ceramic fusion (15) of a starting material containing at least one component which is furnished at least substantially with a surface metallization. The proposed temperature sensor (5) is especially suitable for use at temperatures in excess of 1000° C., at which it shows resistance characteristics like that of a platinum resistor.
摘要:
The invention relates to composite systems having at least two layers which comprise different inorganic, ceramic phases and are produced by cosintering of different, finely divided inorganic materials arranged in layers. The composite systems are characterized in that at least two adjacent layers comprise a dense phase largely free of macropores. The layers are durably bonded to one another by sintering together of particles of the different materials at the phase boundary or boundaries. The composite systems and the processes for the production thereof are used, for example, in the manufacture of gas sensors.
摘要:
A polymer compound containing a ceramic powder and a polymer is described, the ceramic powder having a specific surface area of more than 1.8·108 m2/m3 and constituting more than 5 vol. % of the polymer compound, the polymer being shear resistant, and the pore sizes in the polymer compound being 3-15 nm. Furthermore, a method for manufacturing this polymer compound, its use, and a sintered body manufactured therefrom are also described.
摘要翻译:描述了含有陶瓷粉末和聚合物的高分子化合物,陶瓷粉末的比表面积大于1.8.108m 2 / m 3,构成大于5体积% 高分子化合物的%,聚合物是抗剪切的,高分子化合物中的孔径为3-15nm。 此外,还描述了制造该高分子化合物的方法,其用途和由其制造的烧结体。
摘要:
A lithium ion-conducting compound, having a garnet-like crystal structure, and having the general formula: Lin[A(3-a′-a″)A′(a′)A″(a″)][B(2-b′-b″)B′(b′)B″(b″)][C′(c′)C″(c″)]O12, where A, A′, A″ stand for a dodecahedral position of the crystal structure, where A stands for La, Y, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm and/or Yb, A′ stands for Ca, Sr and/or Ba, A″ stands for Na and/or K, 0
摘要翻译:具有石榴石状晶体结构的锂离子导电化合物,具有以下通式:Lin [A(3-a'-a“)A'(a')A”(a“)] [B(2 B'(b')B“(b”)] [C'(c')C“(c”)] O 12,其中A,A',A“代表十二面体位置 晶体结构,其中A代表La,Y,Pr,Nd,Sm,Eu,Gd,Tb,Dy,Ho,Er,Tm和/或Yb,A'代表Ca,Sr和/或Ba,A“ 代表Na和/或K,0