摘要:
Provided are a variable resistance memory device and a method of forming the same. The variable resistance memory device may include a substrate, a plurality of bottom electrodes on the substrate, and a first interlayer insulating layer including a trench formed therein. The trench exposes the bottom electrodes and extends in a first direction. The variable resistance memory device further includes a top electrode provided on the first interlayer insulating layer and extending in a second direction crossing the first direction and a plurality of variable resistance patterns provided in the trench and having sidewalls aligned with a sidewall of the top electrode.
摘要:
Provided are a variable resistance memory device and a method of forming the same. The variable resistance memory device may include a substrate, a plurality of bottom electrodes on the substrate, and a first interlayer insulating layer including a trench formed therein. The trench exposes the bottom electrodes and extends in a first direction. The variable resistance memory device further includes a top electrode provided on the first interlayer insulating layer and extending in a second direction crossing the first direction and a plurality of variable resistance patterns provided in the trench and having sidewalls aligned with a sidewall of the top electrode.
摘要:
Provided is a method for fabricating a phase change memory device. The method includes forming a plurality of bottom electrodes on a substrate, forming a first mold layer on the substrate to extend in a first direction where the bottom electrodes are exposed, forming a second mold layer on the substrate, the second mold layer extending in a second direction orthogonal to the first direction to expose parts of the bottom electrodes, forming a phase change material layer on the first and second mold layers to be connected to parts of the bottom electrodes dividing the phase change material layer as a plurality of phase change layers respectively connected to the parts of the bottom electrodes and forming a plurality of top electrodes on the phase change layers.
摘要:
A probe card and a test apparatus including the probe card for improving test reliability. The probe card may include a first input terminal Microelectromechanical Systems (MEMS) switch that connects a first input terminal and a first input probe pin, wherein the first input terminal MEMS switch comprises a control portion that receives an operation signal and a connection portion that connects the first input terminal and the first input probe pin. The probe card may further include a first output terminal MEMS switch that connects a first output terminal and a first output probe pin, wherein the first output terminal MEMS switch comprises a control portion that receives the operation signal and a connection portion that connects the first output terminal and the first output probe pin.
摘要:
A phase changeable memory element is formed by conformally forming a phase changeable material film in a contact hole on a substrate so as to create a void in the phase changeable material film in the contact hole. The void is at least partially closed by impinging a laser beam on the phase changeable material film sufficiently to reflow the phase changeable material film in the void.
摘要:
A phase-changeable memory device may include a substrate, an insulating layer on the substrate, first and second electrodes, and a pattern of a phase-changeable material between the first and second electrodes. More particularly, the insulating layer may have a hole therein, and the first electrode may be in the hole in the insulating layer. Moreover, portions of the second electrode may extend beyond an edge of the pattern of phase-changeable material. Related methods are also discussed.
摘要:
A phase changeable memory cell array region includes a lower interlayer insulating layer disposed on a semiconductor substrate. The region also includes a plurality of conductive plugs disposed through the lower interlayer insulating layer. The region also includes a phase changeable material pattern operably disposed on the lower interlayer insulating layer, the phase changeable pattern covering at least two of the plurality of conductive plugs, wherein the phase changeable material pattern includes a plurality of first regions in contact with one or more of the plurality of conductive plugs and at least one second region interposed between the plurality of the first regions, wherein the at least one second region has a lower thermal conductivity than the plurality of first regions. The phase changeable memory cell array region also includes an upper interlayer insulating layer covering at least one of the phase changeable material pattern and the lower interlayer insulating layer. The region also includes conductive patterns disposed through the upper interlayer insulating layer and electrically connected to a plurality of predetermined regions of the plurality of first regions.
摘要:
In a method of forming a conductive line for a semiconductor device using a carbon nanotube and a semiconductor device manufactured using the method, the method includes activating a surface of an electrode of the semiconductor device using surface pretreatment to create an activated surface of the electrode, forming an insulating layer on the activated surface of the electrode, and forming a contact hole through the insulating layer to expose a portion of the activated surface of the electrode, and supplying a carbon-containing gas onto the activated surface of the electrode through the contact hole to grow a carbon nanotube, which forms the conductive line, on the activated surface of the electrode. Alternatively, the activation step of the surface of the electrode may be replaced with a formation of a catalytic metal layer on the surface of the electrode.
摘要:
A phase changeable memory device includes a lower interlayer dielectric layer on a semiconductor substrate. A plurality of first phase changeable data storage elements is disposed on the lower interlayer dielectric layer. A middle interlayer dielectric layer covers the first phase changeable data storage elements and the lower interlayer dielectric layer. A plurality of second phase changeable data storage elements is disposed on the middle interlayer dielectric layer. The first and second phase changeable data storage elements are arrayed in rows and columns such that respective first phase changeable data storage elements are disposed between respective adjacent second phase changeable data storage elements in the rows and columns. A plate electrode overlies the first and second phase changeable data storage elements and is electrically connected to the first and second phase changeable data storage elements. Related fabrication methods are also disclosed.
摘要:
In a method of forming a conductive line for a semiconductor device using a carbon nanotube and a semiconductor device manufactured using the method, the method includes activating a surface of an electrode of the semiconductor device using surface pretreatment to create an activated surface of the electrode, forming an insulating layer on the activated surface of the electrode, and forming a contact hole through the insulating layer to expose a portion of the activated surface of the electrode, and supplying a carbon-containing gas onto the activated surface of the electrode through the contact hole to grow a carbon nanotube, which forms the conductive line, on the activated surface of the electrode. Alternatively, the activation step of the surface of the electrode may be replaced with a formation of a catalytic metal layer on the surface of the electrode.