摘要:
Optical Integrated Circuits (OIC) in Surface Plasmon Resonance (SPR) Analysis Systems combined with micorarray or microwell plates to provide enhanced sensitivity, stability, speed of analysis and reduced size are disclosed. Using the OIC with other optical analysis methods to provide enhance analysis systems is also disclosed.
摘要:
Devices utilize elements carried by a fluid in a microchannel to switch, attenuate, shutter, filter, or phase shift optical signals. In certain embodiments, a microchannel carries a gaseous or liquid slug that interacts with at least a portion of the optical power of an optical signal traveling through a waveguide. The microchannel may form part of the cladding of the waveguide, part of the core and the cladding, or part of the core only. The microchannel may also have ends or may be configured as a loop or continuous channel. The fluid devices may be self-latching or may be semi-latching. The fluid in the microchannel is moved using e.g., e.g., electrocapillarity, differential-pressure electrocapillarity, electrowetting, continuous electrowetting, electrophoresis, electroosmosis, dielectrophoresis, electro-hydrodynamic electrohydrodynamic pumping, magneto-hydrodynamic magnetohydrodynamic pumping, thermocapillarity, thermal expansion, dielectric pumping, and/or variable dielectric pumping.
摘要:
Optical Integrated Circuits (OIC) in Surface Plasmon Resonance (SPR) Analysis Systems combined with micorarray or microwell plates to provide enhanced sensitivity, stability, speed of analysis and reduced size are disclosed. Using the OIC with other optical analysis methods to provide enhance analysis systems is also disclosed.
摘要:
Described herein are optical devices including resonant cavity structures. In one embodiment, an optical fiber includes: (1) an elongated core including an outer surface; (2) an inner reflector disposed adjacent to the outer surface of the core and extending substantially along a length of the core; (3) an outer reflector spaced apart from the inner reflector and extending substantially along the length of the core; and (4) an emission layer disposed between the outer reflector and the inner reflector and extending substantially along the length of the core, the emission layer configured to emit radiation that is guided within the optical fiber.
摘要:
Described herein are solar modules including spectral concentrators. In one embodiment, a solar module includes a set of photovoltaic cells and a spectral concentrator optically coupled to the set of photovoltaic cells. The spectral concentrator is configured to: (1) collect incident solar radiation; (2) convert the incident solar radiation into substantially monochromatic, emitted radiation; and (3) convey the substantially monochromatic, emitted radiation to the set of photovoltaic cells.
摘要:
Apparatus and methods for clock and data recovery are disclosed. In one embodiment, a clock and data recovery system includes a sampler, a deserializer, a phase detector and a frequency detector. The sampler may be configured to sample a serial data stream to produce data samples and transition samples. The deserializer may be configured to deserialize the data samples and the transition samples to produce deserialized data samples and deserialized transition samples. The deserialized data samples and the deserialized transition samples can be aligned and provided to the phase detector and the frequency detector, thereby improving phase alignment and cycle slip detection.
摘要:
Described herein are techniques for authenticating and identifying objects using markings formed with correlated random patterns. In one embodiment, an object to be authenticated includes a substrate and a marking adjacent to the substrate. The marking includes a luminescent material distributed in accordance with a correlated random pattern, and the luminescent material exhibits photoluminescence having a quantum efficiency of at least 10 percent.
摘要:
An apparatus for replacing lost PSTN data in a packet network and for generating variable power white noise, includes a lost packet detection unit (402) for detecting lost data packets, a data processing unit (404) for producing in response a lost data output indicating when replacement data needed, data playout unit (408) or data replacement unit (406), each may be implemented as a variable power white noise generator (FIG. 3) to generate replacement data by reusing data stored in an extended playback buffer, and placing the re-used replacement data on an external network.