摘要:
To reduce the amounts of HC, NOx and other emissions from a direct injection engine when a catalyst is still in its unheated state, and to promote catalyst quick light-off operation by increasing the temperature of exhaust gases, a control device comprises a temperature state identifier (31) for judging the temperature state of a catalyst (22) and a fuel injection controller (33) for controlling fuel injection from an injector (11). The fuel injection controller (33) controls the injector (11) based on judgment results of the temperature state identifier (31) in such a way that the injector (11) makes at least two-step split injection during a period from an intake stroke to an ignition point including a later injection cycle performed in a middle portion of a compression stroke or later and an earlier injection cycle performed prior to the later injection cycle at least in a low-load range of the engine when the catalyst (22) is in its unheated state, in which its temperature is lower than its activation temperature, and either of the later injection cycle and earlier injection cycle injects fuel which contributes to main combustion during a main combustion period in which approximately 10% to 90% by mass of the injected fuel is burnt in a combustion process occurring in the combustion chamber.
摘要:
An engine control system for a direct injection-spark ignition type of engine which is equipped with a fuel injector for spraying fuel directly into a combustion chamber and an exhaust system having a lean NOx conversion catalyst for lowering an emission level of nitrogen oxides (NOx) in exhaust gas at an air-fuel ratio of .lambda.>1 controls divides a given amount of fuel into two parts which are intermittently delivered through early and late split injection respectively in a intake stroke and controls a fuel injector such that a midpoint between points at which the early and late split injection are timed respectively to start is before a midpoint of a intake stroke while the engine is in a cold condition in an enriched fuel charge zone.
摘要:
An engine control system for a direct injection-spark ignition type of engine which is equipped with a fuel injector for spraying fuel directly into a combustion chamber, an exhaust system having a lean NOx conversion catalyst for lowering an emission level of nitrogen oxides (NOx) in exhaust gas and an exhaust gas recirculation system divides a given amount of fuel into two parts which are intermittently delivered through early and late split injection respectively in a intake stroke and controls a fuel injector such that a midpoint between points at which the early and late split injection are timed respectively to start is before a midpoint of a intake stroke and the exhaust gas recirculation system admits exhaust gas partly into an intake air stream while the engine is in a lean homogeneous charge zone.
摘要:
A catalyst light-off device for a direct injection engine comprises a temperature state identifier (31) for judging the temperature state of a catalyst (22) for converting exhaust gases, a fuel injection controller (33) for controlling fuel injection from an injector (11), and an ignition timing controller (35). When the catalyst is in its unheated state in which its temperature is lower than its activation temperature, the fuel injection controller (33) causes the injector (11) to make split injection during a period from an intake stroke to an ignition point including a later injection cycle which produces a mixture having local unevenness and an earlier injection cycle which produces a uniform and lean mixture, and the ignition timing controller (35) retards the ignition point.
摘要:
A control device for a direct injection engine includes an identifier for judging whether a catalyst is in its unheated state in which its temperature is lower than its activation temperature, an engine temperature state detector for sensing the temperature state of the engine, and a fuel injection controller for controlling fuel injection from the injector. The fuel injection controller controls an injector in such a way that it makes at least two-step split injection including an earlier injection cycle performed during an intake stroke and a later injection cycle performed in a middle portion of a compression stroke or later when the catalyst is in its unheated state, and the later injection cycle is retarded when the catalyst is still in its unheated state but the engine temperature has become higher than a specified temperature compared to a case where the temperature of the engine is equal to or lower than the specified temperature.
摘要:
An exhaust gas purifying system includes an exhaust gas purifying catalyst having a nitrogen oxide absorbing material which is installed in an exhaust line of an engine and performs split fuel injection to inject fuel directly into each combustion chamber partly during a suction stroke and partly during a compression stroke to provide and supply an increased amount of carbon monoxide to the nitrogen oxide absorbing material so as thereby to desorb sulfur oxides from the nitrogen oxide absorbing material.
摘要:
An engine control system for a direct injection-spark ignition type of engine which is equipped with an exhaust system having a lean NOx conversion catalyst for lowering a NOx level of exhaust gas while the engine operates in a lean fuel charge zone controls the engine to make stratified charge combustion in a zone of partial engine loadings and homogeneous charge combustion in a zone other than said partial engine loading zone and, while the engine operates in a zone where enriched homogeneous charge combustion is made, divides a given amount of fuel into two parts and sprays them through early and late split injection in a intake stroke and admits exhaust gas partly into an intake air stream introduced into the intake system from the exhaust system while the early and late split injection are made. The split injection are caused such that a midpoint between points at which the early and late split injection are timed to start before a midpoint of a intake stroke.
摘要:
An engine control system for a direct injection-spark ignition type of engine which is equipped with a fuel injector for spraying fuel directly into a combustion chamber and an exhaust system having a lean NOx conversion catalyst for lowering an emission level of nitrogen oxides (NOx) in exhaust gas at an air-fuel ratio of .lambda.>1 controls divides a given amount of fuel into two parts which are intermittently delivered through early and late split injection respectively in a intake stroke and controls a fuel injector such that a midpoint between points at which the early and late split injection are timed respectively to start is before a midpoint of a intake stroke while the engine is in a lean fuel charge zone.
摘要:
An engine control system for a direct injection-spark ignition type of engine which is equipped with a fuel injector for spraying fuel directly into a combustion chamber and an exhaust system having a lean NOx conversion catalyst for lowering an emission level of nitrogen oxides (NOx) in exhaust gas at an air-fuel ratio of &lgr;>1 controls divides a given amount of fuel into two parts which are intermittently delivered through early and late split injection respectively in a intake stroke and controls a fuel injector such that a midpoint between points at which the early and late split injection are timed respectively to start is before a midpoint of a intake stroke while the engine is in a lean fuel charge zone.
摘要:
In a direct injection engine including an injector (22) for directly injecting fuel into a combustion chamber (15) and a lean NOx catalyst (36), an ECU (50) changes the air-fuel ratio from that higher than the stoichiometric air-fuel ratio to that substantially equal to or lower than the stoichiometric air-fuel ratio. When the air-fuel ratio has changed from a air-fuel ratio higher than the stoichiometric air-fuel ratio to an air-fuel ratio substantially equal to or lower than the stoichiometric air-fuel ratio, the ECU controls to divisionally execute fuel injection from the injector (22) in at least two injections, i.e., leading injection that starts within the intake stroke period and trailing injection that starts within the compression stroke period.