摘要:
A method of manufacturing a magneto-electric conversion device having a large rate of change of magnetic resistance and which is easy to position with respect to a magnetized surface, and a moving subject displacement detector using a magneto-electric conversion device manufactured by that method. A magnet which rotates together with the rotation of a drive gear is magnetized in alternately differing north and south poles, arranged in an equal sized section from a center portion thereof. An IC chip is positioned opposite to and at a distance from the magnetized surface of the magnet. Magneto-electric conversion devices are located on the IC chip. These magneto-electric conversion devices are formed by repeated alternate depositions, onto a surface of a single-crystal silicon substrate, of magnetic cobalt films having a thickness of several to several tens of angstroms and non-magnetic copper films having a thickness of several to several tens of angstroms.
摘要:
This invention relates to a magnetoresistive element used for a magnetic sensor, etc. A ferromagnetic magnetoresistive element thin film is formed so as to be electrically connected to and so as to overlap the upper end portion of an aluminum wiring metal on a substrate. Through using a vacuum heat treatment with a temperature between 350.degree. and 450.degree. C., a Ni--Al-based alloy is formed at the overlapping portion. Therefore, even when a surface protection film of silicon nitride is subsequently formed by plasma CVD on the substrate, the alloy prevents the nitriding of the upper end portion of the aluminum wiring metal. Accordingly, the surface can be protected from moisture by the silicon nitride film without increasing the contact resistance between the magnetoresistive element thin film and the wiring metal. Instead of the Ni--Al-based alloy, other conductive metals such as TiW, TiN, Ti, Zr, or the like may be used. Also, the surface protection film may be a multi-layered film having a first film containing no nitrogen, such as a silicon oxide film, and a second film of silicon nitride film formed on the first film.
摘要:
It is an object to provide a method of fabrication for a semiconductor acceleration sensor which can prevent destruction of a movable portion during dicing. A sacrificial layer composed of silicon oxide film is formed on a silicon substrate, and a movable member composed of polycrystalline silicon is formed on the sacrificial layer. A polyimide film is applied on the movable member at room temperature and heated to approximately 350.degree. C. to harden. The movable member is supported by this polyimide film. Accordingly, etching liquid penetration holes are formed on the polyimide film. Further, the sacrificial layer disposed between the movable member and the silicon substrate is etched away by means of dipping the silicon substrate into hydrofluoric acid-based etching liquid. Thereafter, the silicon substrate is dipped into demineralized water to replace the etching liquid with demineralized water, and subsequently the silicon substrate is dried. Accordingly, the silicon substrate is diced and thereafter the polyimide film is etched away by O.sub.2 ashing.
摘要:
A semiconductor acceleration sensor capable of reducing a leakage current and manufacturing method thereof is disclosed. A beam structure is disposed on a silicon substrate. The beam structure has a movable section, and the movable section is disposed spaced at a prescribed distance above silicon substrate. A movable electrode section is formed in one portion of movable section. Fixed electrodes made of an impurity diffusion layer are formed in silicon substrate to correspond to both sides of a movable electrode section. A peripheral circuit is formed in silicon substrate. The beam structure and the peripheral circuit are electrically connected by an electroconductive thin film, made of polysilicon. Then, when a voltage is applied to the beam structure, and a voltage is applied to both fixed electrodes, an inversion layer is formed, and an electrical current flows between the fixed electrodes. In the case where an acceleration is received and movable section is displaced, the electrical current flowing between the fixed electrodes changes.
摘要:
A hybrid integrated circuit having a lead frame electrically connected to electronic components by means of a silver (Ag) paste, the hybrid integrated circuit comprising: an electroless-plated coating on the lead frame, the coating being free from an insulating surface oxide layer at least in a connection area in which the electrical connection is provided. A process of producing this hybrid integrated circuit comprises: a first step of electroless-plating a lead frame by using a phosphorus-containing reducing agent to form a coating on the lead frame; a second step of mounting electronic components on the lead frame and then electrically and mechanically connecting the former to the latter by means of an electroconductive paste; and a third step of maintaining the surface of the electroless-plated coating free from a phosphorus-containing oxide layer during the connecting operation.
摘要:
In a revolution detecting device, a tunneling magnetoresistance sensor having an element located in a region is provided. The tunneling magnetoresistance sensor comprises a substrate, a pinned layer composed of ferromagnetism material and located to one side of the substrate, a tunneling layer composed of insulating film and located to one side of the pinned layer and a free layer composed of ferromagnetism film and located to one side of the tunneling layer. The element is configured to detect a change of magnetoresistance of the element according to a magnetic field applied in the region in which the element is located. The change of the magnetoresistance of the element is based on a change of current flowing through the tunneling layer between the pinned layer and the free layer. In the revolution detecting device, a revolution member is disposed in a vicinity of the element in the Y axis from a viewpoint of the element. The revolution member has a surface portion opposite to the element. The surface portion is formed with S poles and N poles which are alternately arranged. In the revolution detecting device, a magnet is disposed in a vicinity of the element and generating the magnetic field and a direction of the magnetic field is substantially parallel to the Y axis at a center portion of the element. When the revolution member revolves, the S poles and N poles are configured to move substantially in parallel to the X axis on the Y axis determined by the element.
摘要:
Magnetoresistive devices are formed on the insulating surface of a substrate made of silicon. The devices are connected in series through an insulating film using a wiring layer formed on the surface of the substrate. An insulating film for passivation is formed to cover the devices and the wiring layer. A magnetic shield layer of Ni—Fe alloy is formed on the passivation insulating film through an organic film for relieving thermal stress to cover one of the devices. After removal of the sensor chip containing the magnetoresistive devices and other components from the wafer, the chip is bonded to a lead frame through an Ag paste layer by heat treatment. Preferably, the magnetic shield layer is made of a Ni—Fe alloy having a Ni content of 69% or less.
摘要:
Magnetoresistive devices are formed on the insulating surface of a substrate made of silicon. The devices are connected in series through an insulating film using a wiring layer formed on the surface of the substrate. An insulating film for passivation is formed to cover the devices and the wiring layer. A magnetic shield layer of Ni—Fe alloy is formed on the passivation insulating film through an organic film for relieving thermal stress to cover one of the devices. After removal of the sensor chip containing the magnetoresistive devices and other components from the wafer, the chip is bonded to a lead frame through an Ag paste layer by heat treatment. Preferably, the magnetic shield layer is made of a Ni—Fe alloy having a Ni content of 69% or less.
摘要:
A magnetic sensor apparatus includes a semiconductor substrate and a magnetic impedance device for detecting a magnetic field. The magnetic impedance device is disposed on the substrate. The magnetic sensor apparatus has minimum size and is made with low manufacturing cost. Here, the magnetic impedance device detects a magnetic field in such a manner that impedance of the device is changed in accordance with the magnetic filed when an alternating current is applied to the device and the impedance is measured by an external electric circuit.
摘要:
A magnetic sensor apparatus includes a semiconductor substrate and a magnetic impedance device for detecting a magnetic field. The magnetic impedance device is disposed on the substrate. The magnetic sensor apparatus has minimum size and is made with low manufacturing cost. Here, the magnetic impedance device detects a magnetic field in such a manner that impedance of the device is changed in accordance with the magnetic filed when an alternating current is applied to the device and the impedance is measured by an external electric circuit.