摘要:
A memory module includes a plurality of memory chips, a plurality of data register buffers, and a command/address/control register buffer mounted on a module PCB. The data register buffers perform data transfers with the memory chips. The command/address/control register buffer performs buffering of a command/address/control signal and generates a control signal. The buffered command/address/control signal is supplied to the memory chips, and the control signal is supplied to the data register buffers. According to the present invention, because line lengths between the data register buffers and the memory chips are shortened, it is possible to realize a considerably high data transfer rate.
摘要:
A reference voltage generating circuit is described. The circuit includes a current generating section that generates a first current having a positive temperature coefficient, a voltage generating section that generates a voltage having a negative temperature coefficient, a synthesis section that generates a voltage which is the sum of a voltage having a positive temperature coefficient and developed across both terminals of a resistor, where the voltage has a negative temperature coefficient, and a compensation current generating section that generates a second current having a positive temperature coefficient. The current corresponding to the sum of said first and second currents is caused to flow through the resistor. The synthesis section generates a voltage which is a sum of a terminal voltage of the resistor by the sum current of the first and second currents and the voltage having a negative temperature coefficient.
摘要:
First and second data is transferred in parallel through a first signal transmission path, amplified by first and second relay amplification circuits, and transmitted via a second signal transmission path to first and second output registers, and an output circuit is provided for serially outputting the first and second data held by the first and second output registers, respectively, on the basis of address information. With respect to data to be outputted first of the first and second data, output timing of the data to be outputted later is delayed, data to be outputted first is made to correspond to the first output register, data to be outputted later is made to correspond to the second output register, and the transfer rate of the second signal transmission path corresponding to the first output register is set higher than that of the second signal transmission path corresponding to the second output register.
摘要:
A memory module includes a plurality of memory chips, a plurality of data register buffers, and a command/address/control register buffer mounted on a module PCB. The data register buffers perform data transfers with the memory chips. The command/address/control register buffer performs buffering of a command/address/control signal and generates a control signal. The buffered command/address/control signal is supplied to the memory chips, and the control signal is supplied to the data register buffers. According to the present invention, because line lengths between the data register buffers and the memory chips are shortened, it is possible to realize a considerably high data transfer rate.
摘要:
Disclosed is a reference voltage generating circuit which includes resistors R0, R0 and R3, a differential amplifier A1 and transistors Q1, Q2 and Q3. The collectors of the transistors Q1 and Q2 are connected to differential input terminals of the differential amplifier, while one ends of the R0, R0 and R3 are connected in common to an output of the differential amplifier A1. The other ends of the two resistors R0 are connected in common to the collectors of the transistors Q1 and Q2, while the other end of the resistor R1 is connected to the collector and the base of the transistor Q3, which transistor Q3 has the base connected to the bases of the transistors Q1 and Q2. The emitter size ratio of the transistors Q1 and Q2 is set to 1:N. A current of a value approximately equal to that of the collector current of the transistor Q1 or Q2 and a current with a positive temperature coefficient larger than the first-stated current are caused to flow through the resistor R1. The reference voltage generating circuit outputs a voltage corresponding to the sum of a voltage generated across both ends of the resistor R1 and a base-to-emitter voltage VBE3 of the transistor Q3.
摘要:
A semiconductor storage device is provided in which electrodes are provided so as to be arranged in the central portion so as to divide a semiconductor chip into two segments, an address buffer is provided neighboring those electrodes which receive address signals among said electrodes, memory arrays are constituted so as to be divided into at least two groups sandwiching said central portion, an address decoder is provided on a peripheral side of the semiconductor chip opposite to the central portion where the electrodes of the semiconductor chip are formed, and a predecoder for decoding the address signals is arranged on an intermediate portion extending from said central portion to a portion where said address decoder is provided.
摘要:
A memory module includes a plurality of data connectors provided along a long side of a module substrate, a plurality of memory chips and a plurality of data register buffers mounted on the module substrate, a data line that connects the data connectors and the data register buffers, and data lines that connect the data register buffers and the memory chips. Each of the data register buffers and a plurality of data connectors and a plurality of memory chips corresponding to the data register buffer are arranged side by side in a direction of a short side of the module substrate. According to the present invention, because each line length of the data lines is considerably shortened, it is possible to realize a considerably high data transfer rate.
摘要:
A memory module includes a plurality of memory chips and a plurality of data register buffers mounted on the module substrate. At least two memory chips are allocated to each of the data register buffers. Each of the data register buffers includes M input/output terminals (M is a positive integer equal to or larger than 1) that are connected to the data connectors via a first data line and N input/output terminals (N is a positive integer equal to or larger than 2M) that are connected to corresponding memory chips via second and third data lines, so that the number of the second and third data lines is N/M times the number of the first data lines. According to the present invention, because the load capacities of the second and third data lines are reduced by a considerable amount, it is possible to realize a considerably high data transfer rate.
摘要:
A reference voltage generating circuit includes a current generating section, a voltage generating section, a voltage dividing circuit, and a synthesis section. The current generating section generates a first current having a positive temperature coefficient. The voltage generating section generates a voltage having a negative temperature coefficient. The voltage dividing circuit divides the voltage of the negative temperature coefficient, generated by the voltage generating section. The synthesis section generates a voltage which is the sum of a terminal voltage obtained on causing the first current through a resistor and a voltage obtained on dividing the voltage having the negative temperature coefficient by the voltage dividing circuit, and outputs the sum voltage generated as a reference voltage.
摘要:
Disclosed is a reference voltage generating circuit which includes resistors R0, R0 and R3, a differential amplifier A1 and transistors Q1, Q2 and Q3. The collectors of the transistors Q1 and Q2 are connected to differential input terminals of the differential amplifier, while one ends of the R0, R0 and R3 are connected in common to an output of the differential amplifier A1. The other ends of the two resistors R0 are connected in common to the collectors of the transistors Q1 and Q2, while the other end of the resistor R1 is connected to the collector and the base of the transistor Q3, which transistor Q3 has the base connected to the bases of the transistors Q1 and Q2. The emitter size ratio of the transistors Q1 and Q2 is set to 1:N. A current of a value approximately equal to that of the collector current of the transistor Q1 or Q2 and a current with a positive temperature coefficient larger than the first-stated current are caused to flow through the resistor R1. The reference voltage generating circuit outputs a voltage corresponding to the sum of a voltage generated across both ends of the resistor R1 and a base-to-emitter voltage VBE3 of the transistor Q3.